Geometric data structures on a reconfigurable mesh, with applications

A. Datta
{"title":"Geometric data structures on a reconfigurable mesh, with applications","authors":"A. Datta","doi":"10.1109/IPPS.1997.580983","DOIUrl":null,"url":null,"abstract":"We present several geometric data structures and algorithms for problems for a planar set of rectangles and bipartitioning problems for a point set in two dimensions on a reconfigurable mesh of size n/spl times/n. The problems for rectangles include computing the measure, contour perimeter and maximum clique for the union of a set of rectangles. The bipartitioning problems for a two dimensional point set are solved in the L/sub /spl infin// and L/sub 1/ metrics. We solve all these problems in O(log n) time.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present several geometric data structures and algorithms for problems for a planar set of rectangles and bipartitioning problems for a point set in two dimensions on a reconfigurable mesh of size n/spl times/n. The problems for rectangles include computing the measure, contour perimeter and maximum clique for the union of a set of rectangles. The bipartitioning problems for a two dimensional point set are solved in the L/sub /spl infin// and L/sub 1/ metrics. We solve all these problems in O(log n) time.
几何数据结构上的可重构网格,与应用程序
我们提出了几种几何数据结构和算法,用于解决尺寸为n/spl × /n的可重构网格上的平面矩形集问题和二维点集的双分区问题。矩形的问题包括计算一组矩形的测度、等高线周长和最大团。在L/sub /spl //和L/sub //度量中解决了二维点集的双分区问题。我们在O(log n)时间内解决了所有这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信