{"title":"How to safely use extensionality in Liquid Haskell","authors":"Niki Vazou, M. Greenberg","doi":"10.1145/3546189.3549919","DOIUrl":null,"url":null,"abstract":"Refinement type checkers are a powerful way to reason about functional programs. For example, one can prove properties of a slow, specification implementation and port the proofs to an optimized pure implementation that behaves the same. But to reason about higher-order programs, we must reason about equalities between functions: we need a consistent encoding of functional extensionality. A natural but naive phrasing of the functional extensionality axiom (funExt) is inconsistent in refinement type systems with semantic subtyping and polymorphism: if we assume funExt, then we can prove false. We demonstrate the inconsistency and develop a new approach to equality in Liquid Haskell: we define a propositional equality in a library we call PEq. Using PEq avoids the inconsistency while proving useful equalities at higher types; we demonstrate its use in several case studies. We validate PEq by building a model and developing its metatheory. Additionally, we prove metaproperties of PEq inside Liquid Haskell itself using an unnamed folklore technique, which we dub 'classy induction'.","PeriodicalId":118757,"journal":{"name":"Proceedings of the 15th ACM SIGPLAN International Haskell Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGPLAN International Haskell Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546189.3549919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Refinement type checkers are a powerful way to reason about functional programs. For example, one can prove properties of a slow, specification implementation and port the proofs to an optimized pure implementation that behaves the same. But to reason about higher-order programs, we must reason about equalities between functions: we need a consistent encoding of functional extensionality. A natural but naive phrasing of the functional extensionality axiom (funExt) is inconsistent in refinement type systems with semantic subtyping and polymorphism: if we assume funExt, then we can prove false. We demonstrate the inconsistency and develop a new approach to equality in Liquid Haskell: we define a propositional equality in a library we call PEq. Using PEq avoids the inconsistency while proving useful equalities at higher types; we demonstrate its use in several case studies. We validate PEq by building a model and developing its metatheory. Additionally, we prove metaproperties of PEq inside Liquid Haskell itself using an unnamed folklore technique, which we dub 'classy induction'.