Cerebral Metastases Segmentation using Transfer Gliomas Learning and GrabCut

Ciprian-Mihai Ceauşescu, B. Alexe
{"title":"Cerebral Metastases Segmentation using Transfer Gliomas Learning and GrabCut","authors":"Ciprian-Mihai Ceauşescu, B. Alexe","doi":"10.1109/SYNASC57785.2022.00062","DOIUrl":null,"url":null,"abstract":"Segmentation of medical images is an important area of research that can be used in prognosis prediction and patient treatment. Due to the high variability of data, the task to develop an accurate segmentation method remains challenging. In this paper we address the problem of cerebral metastases segmentation and focus our analysis on the BrainMetShare dataset. In order to enhance the metastases segmentation performance we propose a two stage method. In the first stage we employ a transfer learning procedure where we train an Unet model on the similar task of low and high grade gliomas segmentation provided by the BraTS dataset and then fine-tune the model for solving our problem of cerebral metastases segmentation. In the second stage we use GrabCut to refine the metastases segmentation masks obtained from the first stage. In the experimental evaluation we show that our two stage method based on transfer learning and GrabCut progressively outperforms the baseline model trained only on cerebral metastases data from BrainMetShare.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of medical images is an important area of research that can be used in prognosis prediction and patient treatment. Due to the high variability of data, the task to develop an accurate segmentation method remains challenging. In this paper we address the problem of cerebral metastases segmentation and focus our analysis on the BrainMetShare dataset. In order to enhance the metastases segmentation performance we propose a two stage method. In the first stage we employ a transfer learning procedure where we train an Unet model on the similar task of low and high grade gliomas segmentation provided by the BraTS dataset and then fine-tune the model for solving our problem of cerebral metastases segmentation. In the second stage we use GrabCut to refine the metastases segmentation masks obtained from the first stage. In the experimental evaluation we show that our two stage method based on transfer learning and GrabCut progressively outperforms the baseline model trained only on cerebral metastases data from BrainMetShare.
转移胶质瘤学习和GrabCut的脑转移瘤分割
医学图像分割是一个重要的研究领域,可用于预后预测和患者治疗。由于数据的高度可变性,开发一种准确的分割方法仍然是一个挑战。在本文中,我们解决了脑转移瘤的分割问题,并重点分析了BrainMetShare数据集。为了提高转移瘤的分割性能,我们提出了一种两阶段分割方法。在第一阶段,我们采用迁移学习过程,在BraTS数据集提供的低级别和高级别胶质瘤分割的类似任务上训练Unet模型,然后对模型进行微调,以解决我们的脑转移瘤分割问题。在第二阶段,我们使用GrabCut来细化从第一阶段获得的转移瘤分割掩码。在实验评估中,我们表明基于迁移学习和GrabCut的两阶段方法逐渐优于仅根据BrainMetShare的脑转移数据训练的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信