Towards a Parallel Computing Framework for Direct Sonification of Multivariate Chronological Data

G. Krekovic, I. Vican
{"title":"Towards a Parallel Computing Framework for Direct Sonification of Multivariate Chronological Data","authors":"G. Krekovic, I. Vican","doi":"10.1145/3123514.3123551","DOIUrl":null,"url":null,"abstract":"This paper presents a generic and scalable framework for direct sonification of large multivariate data sets with an explicit time dimension. As digitalization and the process of data collection gathers momentum in many fields of human activity, such large data sets with many dimensions of different data types are common. The specificity of our framework is uniformness of the synthesis technique on different temporal scales achieved by using direct sonification of particular data rows in corresponding sound grains. This way, both distinctiveness of individual data rows and patterns on the higher scale should become perceivable in the synthesized audio content. In order to attain scalability, the implementation relies on parallel computing.","PeriodicalId":282371,"journal":{"name":"Proceedings of the 12th International Audio Mostly Conference on Augmented and Participatory Sound and Music Experiences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Audio Mostly Conference on Augmented and Participatory Sound and Music Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3123514.3123551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a generic and scalable framework for direct sonification of large multivariate data sets with an explicit time dimension. As digitalization and the process of data collection gathers momentum in many fields of human activity, such large data sets with many dimensions of different data types are common. The specificity of our framework is uniformness of the synthesis technique on different temporal scales achieved by using direct sonification of particular data rows in corresponding sound grains. This way, both distinctiveness of individual data rows and patterns on the higher scale should become perceivable in the synthesized audio content. In order to attain scalability, the implementation relies on parallel computing.
面向多元时序数据直接超声处理的并行计算框架
本文提出了一种通用的、可扩展的框架,用于对具有明确时间维的大型多元数据集进行直接超声处理。随着数字化和数据收集的进程在人类活动的许多领域蓬勃发展,这种具有不同数据类型的多个维度的大型数据集是常见的。我们的框架的特殊性是在不同的时间尺度上合成技术的均匀性,通过在相应的声音颗粒中使用特定数据行的直接超声来实现。这样,在合成的音频内容中就可以感知到各个数据行的独特性和更高尺度上的模式。为了获得可扩展性,实现依赖于并行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信