Optimal individual supervised hyperspectral band selection distinguishing savannah trees at leaf level

P. Debba, M. Cho, R. Mathieu
{"title":"Optimal individual supervised hyperspectral band selection distinguishing savannah trees at leaf level","authors":"P. Debba, M. Cho, R. Mathieu","doi":"10.1109/WHISPERS.2009.5289068","DOIUrl":null,"url":null,"abstract":"This paper uses simulated annealing and focus on the spectral angle mapper (SAM), to demonstrate how the separability of two mean spectra from different species can be increased by choosing the bands that maximize the metric. It is known that classification performance is enhanced when the differences in mean spectra for each endmember species are maximized. Comparison was made using the selected bands derived from the proposed method, to all bands in the electromagnetic spectrum (EMS), only the bands in the visible, near infrared and short wave infrared regions of the EMS and selected bands using stepwise discriminant analysis. The bands from the proposed method often indicates a better choice of band selection as viewed by the summary statistics for (a) the SAM measurements, (b) the correlations between bands and (c) the spectral information divergence (SID), for each pair of species; and the classification accuracy of SAM and SID.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper uses simulated annealing and focus on the spectral angle mapper (SAM), to demonstrate how the separability of two mean spectra from different species can be increased by choosing the bands that maximize the metric. It is known that classification performance is enhanced when the differences in mean spectra for each endmember species are maximized. Comparison was made using the selected bands derived from the proposed method, to all bands in the electromagnetic spectrum (EMS), only the bands in the visible, near infrared and short wave infrared regions of the EMS and selected bands using stepwise discriminant analysis. The bands from the proposed method often indicates a better choice of band selection as viewed by the summary statistics for (a) the SAM measurements, (b) the correlations between bands and (c) the spectral information divergence (SID), for each pair of species; and the classification accuracy of SAM and SID.
在叶片水平上识别草原树木的最优个体监督高光谱波段选择
本文以光谱角映射器(SAM)为研究对象,采用模拟退火的方法,论证了如何通过选择度量最大的波段来提高不同种类的两个平均光谱的可分性。我们知道,当每个端元物种的平均光谱差异最大时,分类性能就会提高。利用该方法得到的选择波段与电磁波谱(EMS)的所有波段、EMS的可见光、近红外和短波红外波段以及采用逐步判别分析的选择波段进行比较。从(a) SAM测量值、(b)波段之间的相关性和(c)每对物种的光谱信息散度(SID)的汇总统计数据来看,所提出方法的波段选择通常表明波段选择更好;SAM和SID的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信