Pythoneers at WANLP 2022 Shared Task: Monolingual AraBERT for Arabic Propaganda Detection and Span Extraction

Joseph Attieh, Fadi Hassan
{"title":"Pythoneers at WANLP 2022 Shared Task: Monolingual AraBERT for Arabic Propaganda Detection and Span Extraction","authors":"Joseph Attieh, Fadi Hassan","doi":"10.18653/v1/2022.wanlp-1.64","DOIUrl":null,"url":null,"abstract":"In this paper, we present two deep learning approaches that are based on AraBERT, submitted to the Propaganda Detection shared task of the Seventh Workshop for Arabic Natural Language Processing (WANLP 2022). Propaganda detection consists of two main sub-tasks, mainly propaganda identification and span extraction. We present one system per sub-task. The first system is a Multi-Task Learning model that consists of a shared AraBERT encoder with task-specific binary classification layers. This model is trained to jointly learn one binary classification task per propaganda method. The second system is an AraBERT model with a Conditional Random Field (CRF) layer. We achieved rank 3 on the first sub-task and rank 1 on the second sub-task.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present two deep learning approaches that are based on AraBERT, submitted to the Propaganda Detection shared task of the Seventh Workshop for Arabic Natural Language Processing (WANLP 2022). Propaganda detection consists of two main sub-tasks, mainly propaganda identification and span extraction. We present one system per sub-task. The first system is a Multi-Task Learning model that consists of a shared AraBERT encoder with task-specific binary classification layers. This model is trained to jointly learn one binary classification task per propaganda method. The second system is an AraBERT model with a Conditional Random Field (CRF) layer. We achieved rank 3 on the first sub-task and rank 1 on the second sub-task.
WANLP 2022共享任务:用于阿拉伯语宣传检测和跨度提取的单语AraBERT
在本文中,我们提出了两种基于AraBERT的深度学习方法,提交给第七届阿拉伯语自然语言处理研讨会(WANLP 2022)的宣传检测共享任务。宣传检测主要包括两个子任务,主要是宣传识别和跨度提取。我们为每个子任务提供一个系统。第一个系统是一个多任务学习模型,它由一个具有任务特定二进制分类层的共享AraBERT编码器组成。该模型被训练为每个宣传方法共同学习一个二元分类任务。第二个系统是一个带有条件随机场(CRF)层的AraBERT模型。我们在第一个子任务上排名第3,在第二个子任务上排名第1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信