The singular value decomposition-based anchor word selection method for separable nonnegative matrix factorization

Delano Novrilianto, H. Murfi, Arie Wibowo
{"title":"The singular value decomposition-based anchor word selection method for separable nonnegative matrix factorization","authors":"Delano Novrilianto, H. Murfi, Arie Wibowo","doi":"10.1109/IALP.2017.8300600","DOIUrl":null,"url":null,"abstract":"One of the recent methods for the topic modeling is separable nonnegative matrix factorization (SNMF). In general, SNMF consists of three main steps, which are, generating a word co-occurrence matrix, selecting anchor words, and recovering a topic matrix. The anchor words strongly influence the interpretability of extracted topics. In this paper, we propose a new method for selecting the anchor words by using singular value decomposition (SVD). We assume that the most dominant words in each latent semantics created by SVD are the potential candidates for the anchor words. Our simulations show that the SVD-based anchor word selection method can reach better interpretability scores of extracted topics than the common convex hull-based method on two of three datasets.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One of the recent methods for the topic modeling is separable nonnegative matrix factorization (SNMF). In general, SNMF consists of three main steps, which are, generating a word co-occurrence matrix, selecting anchor words, and recovering a topic matrix. The anchor words strongly influence the interpretability of extracted topics. In this paper, we propose a new method for selecting the anchor words by using singular value decomposition (SVD). We assume that the most dominant words in each latent semantics created by SVD are the potential candidates for the anchor words. Our simulations show that the SVD-based anchor word selection method can reach better interpretability scores of extracted topics than the common convex hull-based method on two of three datasets.
基于奇异值分解的可分离非负矩阵分解锚词选择方法
可分离非负矩阵分解(SNMF)是最近发展起来的主题建模方法之一。一般来说,SNMF包括三个主要步骤,即生成词共现矩阵、选择锚词和恢复主题矩阵。锚词对抽取主题的可解释性影响很大。本文提出了一种基于奇异值分解(SVD)的锚词选择方法。我们假设SVD创建的每个潜在语义中最主要的词是锚词的潜在候选词。仿真结果表明,在三个数据集中的两个数据集上,基于奇异值分解的锚词选择方法比基于普通凸壳的锚词选择方法获得了更好的可解释性分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信