Addressing Non-ignorable Panel Attrition Using External Population Data: Analysis of Demographic Events From Survey Data

J. Ermisch
{"title":"Addressing Non-ignorable Panel Attrition Using External Population Data: Analysis of Demographic Events From Survey Data","authors":"J. Ermisch","doi":"10.1177/00491241231186659","DOIUrl":null,"url":null,"abstract":"Empirical analysis of variation in demographic events within the population is facilitated by using longitudinal survey data because of the richness of covariate measures in such data, but there is wave-on-wave dropout. When attrition is related to the event, it precludes consistent estimation of the impacts of covariates on the event and on event probabilities in the absence of additional assumptions. The paper introduces an adjustment procedure based on Bayes Theorem that directly addresses the problem of nonignorable dropout. It uses population information external to the survey sample to convert estimates of event probabilities and marginal effects of covariates on them that are conditional on retention in the longitudinal data to unconditional estimates of these quantities. In many plausible and verifiable circumstances, it produces estimates of the marginal effect of covariates closer to the true unconditional quantities than the conditional estimates obtained from estimation using the survey data alone.","PeriodicalId":286027,"journal":{"name":"Sociological Methods & Research","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00491241231186659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Empirical analysis of variation in demographic events within the population is facilitated by using longitudinal survey data because of the richness of covariate measures in such data, but there is wave-on-wave dropout. When attrition is related to the event, it precludes consistent estimation of the impacts of covariates on the event and on event probabilities in the absence of additional assumptions. The paper introduces an adjustment procedure based on Bayes Theorem that directly addresses the problem of nonignorable dropout. It uses population information external to the survey sample to convert estimates of event probabilities and marginal effects of covariates on them that are conditional on retention in the longitudinal data to unconditional estimates of these quantities. In many plausible and verifiable circumstances, it produces estimates of the marginal effect of covariates closer to the true unconditional quantities than the conditional estimates obtained from estimation using the survey data alone.
利用外部人口数据解决不可忽视的小组损耗:从调查数据分析人口事件
由于纵向调查数据中协变量测量的丰富性,因此可以利用纵向调查数据对人口统计事件的变化进行实证分析,但存在一波接一波的缺失。当损耗与事件相关时,在没有额外假设的情况下,它排除了协变量对事件和事件概率影响的一致估计。本文介绍了一种基于贝叶斯定理的平差方法,直接解决了不可忽略的辍学问题。它使用调查样本外部的人口信息,将事件概率的估计和以纵向数据保留为条件的协变量的边际效应转换为这些数量的无条件估计。在许多可信和可验证的情况下,它产生的协变量边际效应的估计比单独使用调查数据的估计获得的条件估计更接近真正的无条件量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信