Parallel Point Symmetry Based Clustering for Gene Microarray Data

Anasua Sarkar, U. Maulik
{"title":"Parallel Point Symmetry Based Clustering for Gene Microarray Data","authors":"Anasua Sarkar, U. Maulik","doi":"10.1109/ICAPR.2009.40","DOIUrl":null,"url":null,"abstract":"Point symmetry-based clustering is an important unsupervised learning tool for recognizing symmetrical convex or non-convex shaped clusters, even in the microarray datasets. To enable fast clustering of this large data, in this article, a distributed space and time-efficient scalable parallel approach for point symmetry-based K-means algorithm has been proposed. A natural basis for analyzing gene expression data using this symmetry-based algorithm, is to group together genes with similar symmetrical patterns of expression. This new parallel implementation satisfies the quadratic reduction in timing, as well as the space and communication overhead reduction without sacrificing the quality of clustering solution. The parallel point symmetry based K-means algorithm is compared with another newly implemented parallel symmetry-based K-means and existing parallel K-means over four artificial, real-life and benchmark microarray datasets, to demonstrate its superiority,both in timing and validity.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Point symmetry-based clustering is an important unsupervised learning tool for recognizing symmetrical convex or non-convex shaped clusters, even in the microarray datasets. To enable fast clustering of this large data, in this article, a distributed space and time-efficient scalable parallel approach for point symmetry-based K-means algorithm has been proposed. A natural basis for analyzing gene expression data using this symmetry-based algorithm, is to group together genes with similar symmetrical patterns of expression. This new parallel implementation satisfies the quadratic reduction in timing, as well as the space and communication overhead reduction without sacrificing the quality of clustering solution. The parallel point symmetry based K-means algorithm is compared with another newly implemented parallel symmetry-based K-means and existing parallel K-means over four artificial, real-life and benchmark microarray datasets, to demonstrate its superiority,both in timing and validity.
基于平行点对称的基因微阵列数据聚类
基于点对称的聚类是识别对称凸或非凸形聚类的重要无监督学习工具,即使在微阵列数据集中也是如此。为了实现这种大数据的快速聚类,本文提出了一种基于点对称的K-means算法的分布式空间和时间高效的可扩展并行方法。使用这种基于对称性的算法分析基因表达数据的自然基础是将具有相似对称表达模式的基因分组在一起。这种新的并行实现在不牺牲集群解决方案质量的情况下,满足了时间的二次减少,以及空间和通信开销的减少。将基于并行点对称的K-means算法与另一种新实现的基于并行点对称的K-means算法以及现有的四种人工、真实和基准微阵列数据集上的并行K-means算法进行了比较,以证明其在时序和有效性方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信