Cache modeling in probabilistic execution time analysis

Yun Liang, T. Mitra
{"title":"Cache modeling in probabilistic execution time analysis","authors":"Yun Liang, T. Mitra","doi":"10.1145/1391469.1391551","DOIUrl":null,"url":null,"abstract":"Multimedia-dominated consumer electronics devices (such as cellular phone, digital camera, etc.) operate under soft real-time constraints. Overly pessimistic worst-case execution time analysis techniques borrowed from hard real-time systems domain are not particularly suitable in this context. Instead, the execution time distribution of a task provides a more valuable input to the system-level performance analysis frameworks. Both program inputs and underlying architecture contribute to the execution time variation of a task. But existing probabilistic execution time analysis approaches mostly ignore architectural modeling. In this paper, we take the first step towards remedying this situation through instruction cache modeling. We introduce the notion of probabilistic cache states to model the evolution of cache content during program execution over multiple inputs. In particular, we estimate the mean and variance of execution time of a program across inputs in the presence of instruction cache. The experimental evaluation confirms the scalability and accuracy of our probabilistic cache modeling approach.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Multimedia-dominated consumer electronics devices (such as cellular phone, digital camera, etc.) operate under soft real-time constraints. Overly pessimistic worst-case execution time analysis techniques borrowed from hard real-time systems domain are not particularly suitable in this context. Instead, the execution time distribution of a task provides a more valuable input to the system-level performance analysis frameworks. Both program inputs and underlying architecture contribute to the execution time variation of a task. But existing probabilistic execution time analysis approaches mostly ignore architectural modeling. In this paper, we take the first step towards remedying this situation through instruction cache modeling. We introduce the notion of probabilistic cache states to model the evolution of cache content during program execution over multiple inputs. In particular, we estimate the mean and variance of execution time of a program across inputs in the presence of instruction cache. The experimental evaluation confirms the scalability and accuracy of our probabilistic cache modeling approach.
概率执行时间分析中的缓存建模
多媒体主导的消费电子设备(如蜂窝电话、数码相机等)在软实时约束下运行。从硬实时系统领域借来的过于悲观的最坏情况执行时间分析技术并不特别适用于这种情况。相反,任务的执行时间分布为系统级性能分析框架提供了更有价值的输入。程序输入和底层体系结构都会影响任务的执行时间变化。但是现有的概率执行时间分析方法大多忽略了体系结构建模。在本文中,我们通过指令缓存建模迈出了纠正这种情况的第一步。我们引入了概率缓存状态的概念来模拟在多个输入的程序执行过程中缓存内容的演变。特别是,我们估计了在存在指令缓存的情况下,程序跨输入执行时间的平均值和方差。实验结果验证了概率缓存建模方法的可扩展性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信