Technologies and Solutions for Trend Detection in Public Literature for Biomarker Discovery

B. Wachmann
{"title":"Technologies and Solutions for Trend Detection in Public Literature for Biomarker Discovery","authors":"B. Wachmann","doi":"10.1109/ICMLA.2007.124","DOIUrl":null,"url":null,"abstract":"Data sets arising in biomedicine and bioinformatics are often huge and consist of quite different types of data (eg, sequence data and microarray measurements). Consequently, standard machine learning techniques usually cannot be directly applied. In this talk, I will describe an algorithm called affinity propagation and discuss why it offers flexibility in analyzing the kinds of data sets arising in bioinformatics and biomedicine. I'll describe applications in the areas of whole-genome transcript detection using microarrays, image segmentation, text analysis and motif discovery. Affinity propagation can implemented in a couple dozen lines of MATLAB or C and is suitable for distributed computing environments, making it attractive for high-throughput computations.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data sets arising in biomedicine and bioinformatics are often huge and consist of quite different types of data (eg, sequence data and microarray measurements). Consequently, standard machine learning techniques usually cannot be directly applied. In this talk, I will describe an algorithm called affinity propagation and discuss why it offers flexibility in analyzing the kinds of data sets arising in bioinformatics and biomedicine. I'll describe applications in the areas of whole-genome transcript detection using microarrays, image segmentation, text analysis and motif discovery. Affinity propagation can implemented in a couple dozen lines of MATLAB or C and is suitable for distributed computing environments, making it attractive for high-throughput computations.
面向生物标志物发现的公共文献趋势检测技术与解决方案
生物医学和生物信息学中产生的数据集通常是巨大的,并且由不同类型的数据组成(例如,序列数据和微阵列测量)。因此,标准的机器学习技术通常不能直接应用。在这次演讲中,我将描述一种称为亲和传播的算法,并讨论为什么它在分析生物信息学和生物医学中出现的各种数据集时提供了灵活性。我将描述在使用微阵列、图像分割、文本分析和基序发现的全基因组转录检测领域的应用。亲和传播可以在几十行MATLAB或C中实现,并且适用于分布式计算环境,使其对高吞吐量计算具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信