Automatic Vectorization of Stencil Codes with the GGDML Language Extensions

WPMVP'19 Pub Date : 2019-02-16 DOI:10.1145/3303117.3306160
N. Jumah, J. Kunkel
{"title":"Automatic Vectorization of Stencil Codes with the GGDML Language Extensions","authors":"N. Jumah, J. Kunkel","doi":"10.1145/3303117.3306160","DOIUrl":null,"url":null,"abstract":"Partial differential equation (PDE) solvers are important for many applications. PDE solvers execute kernels which apply stencil operations over 2D and 3D grids. As PDE solvers and stencil codes are widely used in performance critical applications, they must be well optimized.\n Stencil computations naturally depend on neighboring grid elements. Therefore, data locality must be exploited to optimize the code and to better use the memory bandwidth -- at the same time, vector processing capabilities of the processor must be utilized.\n In this work, we investigate the effectiveness of using high-level language extensions to exploit SIMD and vectorization features of multicore processors and vector engines. We write a prototype application using the GGDML high-level language extensions, and translate the high-level code with different configurations to investigate the efficiency of the language extensions and the source-to-source translation process to exploit the vector units of the multi-core processors and the vector engines.\n The conducted experiments demonstrate the effectiveness of the language extensions and the translation tool to generate vectorized codes, which makes use of the natural data locality of stencil computations.","PeriodicalId":381073,"journal":{"name":"WPMVP'19","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WPMVP'19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303117.3306160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Partial differential equation (PDE) solvers are important for many applications. PDE solvers execute kernels which apply stencil operations over 2D and 3D grids. As PDE solvers and stencil codes are widely used in performance critical applications, they must be well optimized. Stencil computations naturally depend on neighboring grid elements. Therefore, data locality must be exploited to optimize the code and to better use the memory bandwidth -- at the same time, vector processing capabilities of the processor must be utilized. In this work, we investigate the effectiveness of using high-level language extensions to exploit SIMD and vectorization features of multicore processors and vector engines. We write a prototype application using the GGDML high-level language extensions, and translate the high-level code with different configurations to investigate the efficiency of the language extensions and the source-to-source translation process to exploit the vector units of the multi-core processors and the vector engines. The conducted experiments demonstrate the effectiveness of the language extensions and the translation tool to generate vectorized codes, which makes use of the natural data locality of stencil computations.
基于GGDML语言扩展的模板码自动矢量化
偏微分方程(PDE)求解器在许多应用中都很重要。PDE求解器执行在2D和3D网格上应用模板操作的内核。由于PDE求解器和模板代码广泛应用于性能关键型应用,因此必须对它们进行优化。模板计算自然依赖于相邻的网格元素。因此,必须利用数据局部性来优化代码并更好地利用内存带宽——同时,必须利用处理器的矢量处理能力。在这项工作中,我们研究了使用高级语言扩展来利用多核处理器和矢量引擎的SIMD和向量化特征的有效性。我们使用GGDML高级语言扩展编写了一个原型应用程序,并使用不同的配置对高级代码进行翻译,以研究语言扩展的效率和源到源的翻译过程,以利用多核处理器和矢量引擎的矢量单元。实验证明了语言扩展和翻译工具生成矢量码的有效性,该工具利用了模板计算的自然数据局部性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信