{"title":"Argus","authors":"Hem Regmi, Sanjib Sur","doi":"10.1145/3508022","DOIUrl":null,"url":null,"abstract":"We propose Argus, a system to enable millimeter-wave (mmWave) deployers to quickly complete site-surveys without sacrificing the accuracy and effectiveness of thorough network deployment surveys. Argus first models the mmWave reflection profile of an environment, considering dominant reflectors, and then use this model to find locations that maximize the usability of the reflectors. The key component in Argus is an efficient machine learning model that can map the visual data to the mmWave signal reflections of an environment and can accurately predict mmWave signal profile at any unobserved locations. It allows Argus to find the best picocell locations to provide maximum coverage and also lets users self-localize accurately anywhere in the environment. Furthermore, Argus allows mmWave picocells to predict device's orientation accurately and enables object tagging and retrieval for VR/AR applications. Currently, we implement and test Argus on two different buildings consisting of multiple different indoor environments. However, the generalization capability of Argus can easily update the model for unseen environments, and thus, Argus can be deployed to any indoor environment with little or no model fine-tuning.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose Argus, a system to enable millimeter-wave (mmWave) deployers to quickly complete site-surveys without sacrificing the accuracy and effectiveness of thorough network deployment surveys. Argus first models the mmWave reflection profile of an environment, considering dominant reflectors, and then use this model to find locations that maximize the usability of the reflectors. The key component in Argus is an efficient machine learning model that can map the visual data to the mmWave signal reflections of an environment and can accurately predict mmWave signal profile at any unobserved locations. It allows Argus to find the best picocell locations to provide maximum coverage and also lets users self-localize accurately anywhere in the environment. Furthermore, Argus allows mmWave picocells to predict device's orientation accurately and enables object tagging and retrieval for VR/AR applications. Currently, we implement and test Argus on two different buildings consisting of multiple different indoor environments. However, the generalization capability of Argus can easily update the model for unseen environments, and thus, Argus can be deployed to any indoor environment with little or no model fine-tuning.