HMMeta

Sola Gbenro, Kyle Hippe, Renzhi Cao
{"title":"HMMeta","authors":"Sola Gbenro, Kyle Hippe, Renzhi Cao","doi":"10.1145/3388440.3414702","DOIUrl":null,"url":null,"abstract":"As the body of genomic product data increases at a much faster rate than can be annotated, computational analysis of protein function has never been more important. In this research, we introduce a novel protein function prediction method HMMeta, which is based on the prominent natural language prediction technique Hidden Markov Models (HMM). With a new representation of protein sequence as a language, we trained a unique HMM for each Gene Ontology (GO) term taken from the UniProt database, which in total has 27,451 unique GO IDs leading to the creation of 27,451 Hidden Markov Models. We employed data augmentation to artificially inflate the number of protein sequences associated with GO terms that have a limited amount in the database, and this helped to balance the number of protein sequences associated with each GO term. Predictions are made by running the sequence against each model created. The models within eighty percent of the top scoring model, or 75 models with the highest scores, whichever is less, represent the functions that are most associated with the given sequence. We benchmarked our method in the latest Critical Assessment of protein Function Annotation (CAFA 4) experiment as CaoLab2, and we also evaluated HMMeta against several other protein function prediction methods against a subset of the UniProt database. HMMeta achieved favorable results as a sequence-based method, and outperforms a few notable methods in some categories through our evaluation, which shows great potential for automated protein function prediction. The tool is available at https://github.com/KPHippe/HMM-For-Protein-Prediction.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As the body of genomic product data increases at a much faster rate than can be annotated, computational analysis of protein function has never been more important. In this research, we introduce a novel protein function prediction method HMMeta, which is based on the prominent natural language prediction technique Hidden Markov Models (HMM). With a new representation of protein sequence as a language, we trained a unique HMM for each Gene Ontology (GO) term taken from the UniProt database, which in total has 27,451 unique GO IDs leading to the creation of 27,451 Hidden Markov Models. We employed data augmentation to artificially inflate the number of protein sequences associated with GO terms that have a limited amount in the database, and this helped to balance the number of protein sequences associated with each GO term. Predictions are made by running the sequence against each model created. The models within eighty percent of the top scoring model, or 75 models with the highest scores, whichever is less, represent the functions that are most associated with the given sequence. We benchmarked our method in the latest Critical Assessment of protein Function Annotation (CAFA 4) experiment as CaoLab2, and we also evaluated HMMeta against several other protein function prediction methods against a subset of the UniProt database. HMMeta achieved favorable results as a sequence-based method, and outperforms a few notable methods in some categories through our evaluation, which shows great potential for automated protein function prediction. The tool is available at https://github.com/KPHippe/HMM-For-Protein-Prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信