{"title":"User-Independent Detection of Swipe Pressure Using a Thermal Camera for Natural Surface Interaction","authors":"Tim Dunn, Sean Banerjee, N. Banerjee","doi":"10.1109/MMSP.2018.8547052","DOIUrl":null,"url":null,"abstract":"In this paper, we use a thermal camera to distinguish hard and soft swipes performed by a user interacting with a natural surface by detecting differences in the thermal signature of the surface due to heat transferred by the user. Unlike prior work, our approach provides swipe pressure classifiers that are user-agnostic, i.e., that recognize the swipe pressure of a novel user not present in the training set, enabling our work to be ported into natural user interfaces without user-specific calibration. Our approach generates average classification accuracy of 76% using random forest classifiers trained on a test set of 9 subjects interacting with paper and wood, with 8 hard and 8 soft test swipes per user. We compare results of the user-agnostic classification to user-aware classification with classifiers trained by including training samples from the user. We obtain average user-aware classification accuracy of 82% by adding up to 8 hard and 8 soft training swipes for each test user. Our approach enables seamless adaptation of generic pressure classification systems based on thermal data to the specific behavior of users interacting with natural user interfaces.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we use a thermal camera to distinguish hard and soft swipes performed by a user interacting with a natural surface by detecting differences in the thermal signature of the surface due to heat transferred by the user. Unlike prior work, our approach provides swipe pressure classifiers that are user-agnostic, i.e., that recognize the swipe pressure of a novel user not present in the training set, enabling our work to be ported into natural user interfaces without user-specific calibration. Our approach generates average classification accuracy of 76% using random forest classifiers trained on a test set of 9 subjects interacting with paper and wood, with 8 hard and 8 soft test swipes per user. We compare results of the user-agnostic classification to user-aware classification with classifiers trained by including training samples from the user. We obtain average user-aware classification accuracy of 82% by adding up to 8 hard and 8 soft training swipes for each test user. Our approach enables seamless adaptation of generic pressure classification systems based on thermal data to the specific behavior of users interacting with natural user interfaces.