Semi‐automated Parameterization of a Probabilistic Model Using Logistic Regression—A Tutorial

S. Rass, Sandra König, S. Schauer
{"title":"Semi‐automated Parameterization of a Probabilistic Model Using Logistic Regression—A Tutorial","authors":"S. Rass, Sandra König, S. Schauer","doi":"10.1002/9781119723950.ch22","DOIUrl":null,"url":null,"abstract":"Many practical situations require some modeling of uncertainty, and often, this means speaking about events whose likelihood to occur is conveniently expressible by probability parameters, say, a scalar 0 ≤ p ≤ 1 \n. The semantics of such values can be arbitrarily complex, ranging from simple probabilities, up to conditional likelihoods, or factors of mere subjective interpretation, such as hyper‐parameters in Bayesian models. This chapter addresses the often untold story of how to find a value for a generic probability parameter p \n, or a whole set of such parameters. The simplicity of embodying opaque background dynamics in the mantle of uncertainty, brought into a model by a parameter p \n, is often bought at the challenge for the user of a model to find a good value for it. This tutorial is a step‐by‐step guidance through the idea of finding values for probability parameters “by examples.” Provided that a parameter p refers to the likelihood of an event to occur, or conditionally occur under certain settings of other parameters, we describe how to use logistic regression, as an instance of machine learning, to parameterize models using sets of examples. The method is explained in the R programming language and demonstrated along a running showcase application.","PeriodicalId":332247,"journal":{"name":"Game Theory and Machine Learning for Cyber Security","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Theory and Machine Learning for Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119723950.ch22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many practical situations require some modeling of uncertainty, and often, this means speaking about events whose likelihood to occur is conveniently expressible by probability parameters, say, a scalar 0 ≤ p ≤ 1 . The semantics of such values can be arbitrarily complex, ranging from simple probabilities, up to conditional likelihoods, or factors of mere subjective interpretation, such as hyper‐parameters in Bayesian models. This chapter addresses the often untold story of how to find a value for a generic probability parameter p , or a whole set of such parameters. The simplicity of embodying opaque background dynamics in the mantle of uncertainty, brought into a model by a parameter p , is often bought at the challenge for the user of a model to find a good value for it. This tutorial is a step‐by‐step guidance through the idea of finding values for probability parameters “by examples.” Provided that a parameter p refers to the likelihood of an event to occur, or conditionally occur under certain settings of other parameters, we describe how to use logistic regression, as an instance of machine learning, to parameterize models using sets of examples. The method is explained in the R programming language and demonstrated along a running showcase application.
使用逻辑回归的概率模型的半自动参数化-教程
许多实际情况需要对不确定性进行建模,通常,这意味着谈论那些发生的可能性可以方便地用概率参数表示的事件,例如标量0≤p≤1。这些值的语义可以是任意复杂的,范围从简单的概率,到条件可能性,或者仅仅是主观解释的因素,如贝叶斯模型中的超参数。这一章讲述了一个不为人知的故事,如何为一个一般的概率参数p找到一个值,或者一组这样的参数。在不确定性的外衣中体现不透明的背景动态的简单性,通过参数p带入模型,通常是在模型用户为其找到一个好的值的挑战中购买的。本教程是通过“通过示例”找到概率参数值的想法一步一步的指导。假设参数p是指事件发生的可能性,或者在其他参数的某些设置下有条件地发生的可能性,我们描述了如何使用逻辑回归作为机器学习的一个实例,使用一组示例来参数化模型。该方法用R编程语言进行了解释,并通过运行的演示应用程序进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信