Calibration of GREENLAB Model for Maize with Sparse Experimental Data

Yuntao Ma, Meiping Wen, B. Li, Yan Guo, P. Cournède, P. Reffye
{"title":"Calibration of GREENLAB Model for Maize with Sparse Experimental Data","authors":"Yuntao Ma, Meiping Wen, B. Li, Yan Guo, P. Cournède, P. Reffye","doi":"10.1109/PMA.2006.27","DOIUrl":null,"url":null,"abstract":"Simplification of field measurement to reduce the time-consuming data collection for calibration is important to facilitate the application of the GREENLAB model. The effect of such simplifications on the accuracy of parameter values should be quantified in order to define to what extent simplifications are valid. This study introduced a new method for model parameter optimization with sparse data of maize using a multi-fitting technique, evaluated the effect of such simplifications on the parameter values, and validated the calibrated model with four independent field data sets. The results showed that coefficients of variance (CV) among different simplifications were below 15% for most parameter values. The parameter values of the beta function varied more compared with those of relative sink strength for different simplifications. Organ biomass under four different climate regimes was simulated based on parameter values optimized with a sparse dataset. Significant (P<0.05) deviations of simulation vs. observation correlations from the 1:1 relationship were only observed for internodes of second experiment in 2003. Thus, multi-fitting with sparse data can provide reasonable accuracy of parameter values.","PeriodicalId":315124,"journal":{"name":"2006 Second International Symposium on Plant Growth Modeling and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1899-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Second International Symposium on Plant Growth Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2006.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Simplification of field measurement to reduce the time-consuming data collection for calibration is important to facilitate the application of the GREENLAB model. The effect of such simplifications on the accuracy of parameter values should be quantified in order to define to what extent simplifications are valid. This study introduced a new method for model parameter optimization with sparse data of maize using a multi-fitting technique, evaluated the effect of such simplifications on the parameter values, and validated the calibrated model with four independent field data sets. The results showed that coefficients of variance (CV) among different simplifications were below 15% for most parameter values. The parameter values of the beta function varied more compared with those of relative sink strength for different simplifications. Organ biomass under four different climate regimes was simulated based on parameter values optimized with a sparse dataset. Significant (P<0.05) deviations of simulation vs. observation correlations from the 1:1 relationship were only observed for internodes of second experiment in 2003. Thus, multi-fitting with sparse data can provide reasonable accuracy of parameter values.
基于稀疏实验数据的玉米GREENLAB模型标定
简化现场测量以减少耗时的校准数据收集对于促进GREENLAB模型的应用非常重要。这种简化对参数值精度的影响应加以量化,以便确定简化在何种程度上是有效的。本研究提出了一种基于玉米稀疏数据的多拟合模型参数优化新方法,评估了这种简化对参数值的影响,并用4个独立的野外数据集验证了校准后的模型。结果表明,大多数参数值的不同简化方差系数(CV)均在15%以下。在不同的简化条件下,beta函数的参数值比相对沉降强度的参数值变化更大。在稀疏数据集优化参数值的基础上,模拟了四种不同气候条件下的器官生物量。在2003年的第二次试验中,模拟与观测之间的相关性偏离了1:1的显著性(P<0.05)。因此,稀疏数据的多重拟合可以提供合理的参数值精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信