Food Recognition using Transfer Learning

Ankit Basrur, Dhrumil Mehta, Abhijit Joshi
{"title":"Food Recognition using Transfer Learning","authors":"Ankit Basrur, Dhrumil Mehta, Abhijit Joshi","doi":"10.1109/IBSSC56953.2022.10037284","DOIUrl":null,"url":null,"abstract":"This paper proposes the application of Transfer Learning in classifying a food dish. Traditional methods involve using Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN), which are highly inefficient when the classes in a dataset increase. Therefore, more modern ways of classification become vital to adapt to evolving human tastes. Thus, we have achieved excellent results by leveraging Neural Networks in the form of ResNet, VGG19, EfficientNet, and DenseNet. Additionally, a web crawler has been integrated to provide the recipe for the same dish.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the application of Transfer Learning in classifying a food dish. Traditional methods involve using Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN), which are highly inefficient when the classes in a dataset increase. Therefore, more modern ways of classification become vital to adapt to evolving human tastes. Thus, we have achieved excellent results by leveraging Neural Networks in the form of ResNet, VGG19, EfficientNet, and DenseNet. Additionally, a web crawler has been integrated to provide the recipe for the same dish.
使用迁移学习的食物识别
本文提出了迁移学习在菜肴分类中的应用。传统的方法包括使用人工神经网络(ANN)和卷积神经网络(CNN),当数据集中的类增加时,它们的效率非常低。因此,为了适应不断变化的人类口味,更现代的分类方法变得至关重要。因此,我们利用ResNet、VGG19、EfficientNet和DenseNet等形式的神经网络取得了优异的效果。此外,它还集成了一个网络爬虫来提供同一道菜的食谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信