Scene Text Relocation with Guidance

Anna Zhu, S. Uchida
{"title":"Scene Text Relocation with Guidance","authors":"Anna Zhu, S. Uchida","doi":"10.1109/ICDAR.2017.212","DOIUrl":null,"url":null,"abstract":"Applying object proposal technique for scene text detection becomes popular for its significant improvement in speed and accuracy for object detection. However, some of the text regions after the proposal classification are overlapped and hard to remove or merge. In this paper, we present a scene text relocation system that refines the detection from text proposals to text. An object proposal-based deep neural network is employed to get the text proposals. To tackle the detection overlapping problem, a refinement deep neural network relocates the overlapped regions by estimating the text probability inside, and locating the accurate text regions by thresholding. Since the spacebetweenwordsindifferenttextlinesarevarious, aguidance mechanism is proposed in text relocation to guide where to extract the text regions in word level. This refinement procedure helps boost the precision after removing multiple overlapped text regions or joint cracked text regions. The experimental results on standard benchmark ICDAR 2013 demonstrate the effectiveness of the proposed approach.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Applying object proposal technique for scene text detection becomes popular for its significant improvement in speed and accuracy for object detection. However, some of the text regions after the proposal classification are overlapped and hard to remove or merge. In this paper, we present a scene text relocation system that refines the detection from text proposals to text. An object proposal-based deep neural network is employed to get the text proposals. To tackle the detection overlapping problem, a refinement deep neural network relocates the overlapped regions by estimating the text probability inside, and locating the accurate text regions by thresholding. Since the spacebetweenwordsindifferenttextlinesarevarious, aguidance mechanism is proposed in text relocation to guide where to extract the text regions in word level. This refinement procedure helps boost the precision after removing multiple overlapped text regions or joint cracked text regions. The experimental results on standard benchmark ICDAR 2013 demonstrate the effectiveness of the proposed approach.
场景文本重新定位与指导
将目标建议技术应用于场景文本检测中,因其显著提高了目标检测的速度和精度而受到广泛欢迎。然而,提案分类后的部分文本区域存在重叠,难以去除或合并。本文提出了一种场景文本定位系统,该系统将文本建议的检测细化到文本。采用基于目标建议的深度神经网络来获取文本建议。为了解决检测重叠问题,一种改进的深度神经网络通过估计文本内部的概率来重新定位重叠区域,并通过阈值分割来定位准确的文本区域。由于不同文本行的词间距不同,在文本重定位中提出了一种引导机制,以指导在词级提取文本区域的位置。这种细化过程有助于在去除多个重叠的文本区域或联合破碎的文本区域后提高精度。在标准基准ICDAR 2013上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信