Fast Single-Shot Multiclass Proximal Support Vector Machines and Perceptions

Soman Kp, Loganathan R, Vijaya Ms, Ajay V, Shivsubramani K
{"title":"Fast Single-Shot Multiclass Proximal Support Vector Machines and Perceptions","authors":"Soman Kp, Loganathan R, Vijaya Ms, Ajay V, Shivsubramani K","doi":"10.1109/ICCTA.2007.60","DOIUrl":null,"url":null,"abstract":"Recently Sandor Szedmak and John Shawe-Taylor showed that multiclass support vector machines can be implemented with single class complexity. In this paper we show that computational complexity of their algorithm can be further reduced by modelling the problem as a multiclass proximal support vector machines. The new formulation requires only a linear equation solver. The paper then discusses the multiclass transformation of iterative single data algorithm. This method is faster than the first method. The two algorithm are so much simple that SVM training and testing of huge datasets can be implemented even in a spreadsheet","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recently Sandor Szedmak and John Shawe-Taylor showed that multiclass support vector machines can be implemented with single class complexity. In this paper we show that computational complexity of their algorithm can be further reduced by modelling the problem as a multiclass proximal support vector machines. The new formulation requires only a linear equation solver. The paper then discusses the multiclass transformation of iterative single data algorithm. This method is faster than the first method. The two algorithm are so much simple that SVM training and testing of huge datasets can be implemented even in a spreadsheet
快速单次多类近端支持向量机与感知
最近Sandor Szedmak和John shaw - taylor证明了多类支持向量机可以用单类复杂度实现。在本文中,我们表明,通过将问题建模为多类近端支持向量机,可以进一步降低算法的计算复杂度。新公式只需要一个线性方程求解器。然后讨论了迭代单数据算法的多类变换。这种方法比第一种方法快。这两种算法非常简单,以至于支持向量机的训练和大型数据集的测试甚至可以在电子表格中实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信