Design of Takagi–Sugeno fuzzy systems by learning from examples in case a number of available data is not sufficient

A. Macioł, P. Macioł
{"title":"Design of Takagi–Sugeno fuzzy systems by learning from examples in case a number of available data is not sufficient","authors":"A. Macioł, P. Macioł","doi":"10.7494/978-83-66727-48-9_7","DOIUrl":null,"url":null,"abstract":"The paper describes a solution of a problem of developing of fuzzy rules compliant with the Takagi–Sugeno approach where a number of available examples (observations) is not sufficient. Modeling of fuzzy premises and generating functions describing a dependence of a result variable on antecedents are described. In our original approach a problem of identification of membership functions of variables com-posing premises and a problem of consequent parameters identification are solved. For the first one, we used a simple technique based on individual judgements of experts. The second one is solved with a linear programming method. In particular, our approach to formulate the consequent parameter identification problem allows using of an extremely effective T-S method when a data-driven approach cannot be applied. In the paper we present a description of our methods and results of simulations of accuracy of the proposed approach, based on commonly known benchmarks. The achieved accuracy of classification is sufficient for the most of decision-making systems of an expert nature.","PeriodicalId":165954,"journal":{"name":"Nauka – Technika – Technologia. Tom 2","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nauka – Technika – Technologia. Tom 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/978-83-66727-48-9_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes a solution of a problem of developing of fuzzy rules compliant with the Takagi–Sugeno approach where a number of available examples (observations) is not sufficient. Modeling of fuzzy premises and generating functions describing a dependence of a result variable on antecedents are described. In our original approach a problem of identification of membership functions of variables com-posing premises and a problem of consequent parameters identification are solved. For the first one, we used a simple technique based on individual judgements of experts. The second one is solved with a linear programming method. In particular, our approach to formulate the consequent parameter identification problem allows using of an extremely effective T-S method when a data-driven approach cannot be applied. In the paper we present a description of our methods and results of simulations of accuracy of the proposed approach, based on commonly known benchmarks. The achieved accuracy of classification is sufficient for the most of decision-making systems of an expert nature.
在可用数据数量不足的情况下,通过实例学习设计Takagi-Sugeno模糊系统
本文描述了一个用Takagi-Sugeno方法开发模糊规则的问题的解决方案,其中可用的例子(观测值)数量不够。描述了模糊前提的建模和描述结果变量对前因式的依赖的生成函数。在我们最初的方法中,解决了由前提组成的变量的隶属函数的辨识问题和随后的参数辨识问题。对于第一个问题,我们使用了基于专家个人判断的简单技术。第二个问题用线性规划方法求解。特别是,我们制定后续参数识别问题的方法允许在不能应用数据驱动方法时使用极其有效的T-S方法。在本文中,我们介绍了我们的方法和基于已知基准的所提出方法的准确性模拟结果。对于大多数具有专家性质的决策系统来说,所达到的分类精度是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信