Vehicle Damage Classification and Fraudulent Image Detection Including Moiré Effect Using Deep Learning

U. Waqas, Nimra Akram, S. Kim, Donghun Lee, Ji-Yeol Jeon
{"title":"Vehicle Damage Classification and Fraudulent Image Detection Including Moiré Effect Using Deep Learning","authors":"U. Waqas, Nimra Akram, S. Kim, Donghun Lee, Ji-Yeol Jeon","doi":"10.1109/CCECE47787.2020.9255806","DOIUrl":null,"url":null,"abstract":"Image-based vehicle insurance processing and loan management has large scope for automation in automotive industry. In this paper we consider the problem of car damage classification, where categories include medium damage, huge damage and no damage. Based on deep learning techniques, MobileNet model is proposed with transfer learning for classification. Moreover, moving towards automation also comes with diverse hurdles; users can upload fake images like screenshots or taking pictures from computer screens, etc. To tackle this problem a hybrid approach is proposed to provide only authentic images to algorithm for damage classification as input. In this regard, moiré effect detection and metadata analysis is performed to detect fraudulent images. For damage classification 95% and for moiré effect detection 99% accuracy is achieved.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Image-based vehicle insurance processing and loan management has large scope for automation in automotive industry. In this paper we consider the problem of car damage classification, where categories include medium damage, huge damage and no damage. Based on deep learning techniques, MobileNet model is proposed with transfer learning for classification. Moreover, moving towards automation also comes with diverse hurdles; users can upload fake images like screenshots or taking pictures from computer screens, etc. To tackle this problem a hybrid approach is proposed to provide only authentic images to algorithm for damage classification as input. In this regard, moiré effect detection and metadata analysis is performed to detect fraudulent images. For damage classification 95% and for moiré effect detection 99% accuracy is achieved.
基于深度学习的车辆损伤分类和包含莫尔效应的欺诈性图像检测
基于图像的车险处理和贷款管理在汽车工业自动化中具有很大的应用前景。本文研究了汽车损伤分类问题,分类包括中等损伤、巨大损伤和无损伤。基于深度学习技术,提出了基于迁移学习的MobileNet模型。此外,迈向自动化也面临着各种各样的障碍;用户可以上传假图片,如截图或从电脑屏幕上拍摄的照片等。为了解决这一问题,提出了一种只向损伤分类算法提供真实图像作为输入的混合方法。在这方面,进行莫尔效应检测和元数据分析以检测欺诈性图像。损伤分类准确率达到95%,涡流效应检测准确率达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信