Kalman Filter Embedded MPC for Stochastic Systems

K. Chacko, S. Janardhanan, I. Kar
{"title":"Kalman Filter Embedded MPC for Stochastic Systems","authors":"K. Chacko, S. Janardhanan, I. Kar","doi":"10.1109/ICCAR49639.2020.9108027","DOIUrl":null,"url":null,"abstract":"This paper considers a computationally efficient Model Predictive Control (MPC) framework to design control for stochastic systems. The probability distribution function of the disturbance is utilized in the design of control. The computational efficiency is contributed by three factors: monotonically weighted cost function, reduction in prediction horizon and the concept of event triggering. Kalman Filter is embedded in the MPC in order to achieve a more accurate value of states to be used in the optimization problem. Monte Carlo simulation is carried out on a benchmark system to verify the advantage of the proposed technique.","PeriodicalId":412255,"journal":{"name":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR49639.2020.9108027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a computationally efficient Model Predictive Control (MPC) framework to design control for stochastic systems. The probability distribution function of the disturbance is utilized in the design of control. The computational efficiency is contributed by three factors: monotonically weighted cost function, reduction in prediction horizon and the concept of event triggering. Kalman Filter is embedded in the MPC in order to achieve a more accurate value of states to be used in the optimization problem. Monte Carlo simulation is carried out on a benchmark system to verify the advantage of the proposed technique.
随机系统的嵌入MPC卡尔曼滤波
本文考虑了一种计算效率高的模型预测控制框架来设计随机系统的控制。在控制设计中利用了扰动的概率分布函数。计算效率的提高主要取决于三个因素:单调加权代价函数、预测范围的缩小和事件触发的概念。在MPC中嵌入卡尔曼滤波器,以获得更精确的状态值,用于优化问题。在一个基准系统上进行了蒙特卡罗仿真,验证了该技术的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信