Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy

Georgekutty Jose Maniyattu, Eldho Geegy, N. Leiter, Maximilian Wohlschlager, M. Versen, C. Laforsch
{"title":"Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy","authors":"Georgekutty Jose Maniyattu, Eldho Geegy, N. Leiter, Maximilian Wohlschlager, M. Versen, C. Laforsch","doi":"10.1109/SAS54819.2022.9881372","DOIUrl":null,"url":null,"abstract":"Plastics have become a major part of human’s daily life. An uncontrolled usage of plastic leads to an accumulation in the environment posing a threat to flora and fauna, if not recycled correctly. The correct sorting and recycling of the most commonly available plastic types and an identification of plastic in the environment are important. Fluorescence lifetime imaging microscopy shows a high potential in sorting and identifying plastic types. A data-based and an image-based classification are investigated using python programming language to demonstrate the potential of a neural network based on fluorescence lifetime images to identify plastic types. The results indicate that the data-based classification has a higher identification accuracy compared to the image-based classification.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Plastics have become a major part of human’s daily life. An uncontrolled usage of plastic leads to an accumulation in the environment posing a threat to flora and fauna, if not recycled correctly. The correct sorting and recycling of the most commonly available plastic types and an identification of plastic in the environment are important. Fluorescence lifetime imaging microscopy shows a high potential in sorting and identifying plastic types. A data-based and an image-based classification are investigated using python programming language to demonstrate the potential of a neural network based on fluorescence lifetime images to identify plastic types. The results indicate that the data-based classification has a higher identification accuracy compared to the image-based classification.
利用荧光寿命成像显微镜识别塑料的神经网络的发展
塑料已经成为人类日常生活的重要组成部分。不加控制地使用塑料会导致环境中的堆积,如果不正确回收,会对动植物构成威胁。正确分类和回收最常见的塑料类型以及识别环境中的塑料是很重要的。荧光寿命成像显微镜在分类和识别塑料类型方面显示出很高的潜力。使用python编程语言研究了基于数据和基于图像的分类,以展示基于荧光寿命图像的神经网络识别塑料类型的潜力。结果表明,与基于图像的分类相比,基于数据的分类具有更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信