Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation

Ahmad Alhindi, Qingfu Zhang, E. Tsang
{"title":"Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation","authors":"Ahmad Alhindi, Qingfu Zhang, E. Tsang","doi":"10.1109/UKCI.2014.6930173","DOIUrl":null,"url":null,"abstract":"This paper proposes an idea of using heuristic local search procedures specific for single-objective optimisation in multiobjectie evolutionary algorithms (MOEAs). In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) hybridised with a multi-start single-objective metaheuristic called greedy randomised adaptive search procedure (GRASP). In our method a multiobjetive optimisation problem (MOP) is decomposed into a number of single-objecive subproblems and optimised in parallel by using neighbourhood information. The proposed GRASP alternates between subproblems to help them escape local Pareto optimal solutions. Experimental results have demonstrated that MOEA/D with GRASP outperforms the classical MOEA/D algorithm on the multiobjective 0-1 knapsack problem that is commonly used in the literature. It has also demonstrated that the use of greedy genetic crossover can significantly improve the algorithm performance.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes an idea of using heuristic local search procedures specific for single-objective optimisation in multiobjectie evolutionary algorithms (MOEAs). In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) hybridised with a multi-start single-objective metaheuristic called greedy randomised adaptive search procedure (GRASP). In our method a multiobjetive optimisation problem (MOP) is decomposed into a number of single-objecive subproblems and optimised in parallel by using neighbourhood information. The proposed GRASP alternates between subproblems to help them escape local Pareto optimal solutions. Experimental results have demonstrated that MOEA/D with GRASP outperforms the classical MOEA/D algorithm on the multiobjective 0-1 knapsack problem that is commonly used in the literature. It has also demonstrated that the use of greedy genetic crossover can significantly improve the algorithm performance.
组合多目标优化中分解与抓取的混合
本文提出了在多目标进化算法(moea)中使用启发式局部搜索过程进行单目标优化的思想。本文将基于分解的多目标进化算法(MOEA/D)与多起点单目标元启发式贪婪随机自适应搜索过程(GRASP)相结合。该方法将多目标优化问题分解为多个单目标子问题,并利用邻域信息进行并行优化。所提出的GRASP在子问题之间交替进行,以帮助它们逃避局部帕累托最优解。实验结果表明,在文献中常用的多目标0-1背包问题上,基于GRASP的MOEA/D算法优于经典的MOEA/D算法。实验还表明,使用贪婪遗传交叉可以显著提高算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信