Convergence Analysis as Distribution Dynamics When Data are Spatially Dependent

Margherita Gerolimetto, S. Magrini
{"title":"Convergence Analysis as Distribution Dynamics When Data are Spatially Dependent","authors":"Margherita Gerolimetto, S. Magrini","doi":"10.2139/ssrn.1639345","DOIUrl":null,"url":null,"abstract":"Conditional distributions for the analysis of convergence are usually estimated using a standard kernel smoother but this is known to be biased. Hyndman et al. (1996) thus suggest a conditional density estimator with a mean function specified by a local polynomial smoother, i.e. one with better bias properties. However, even in this case, the estimated conditional mean might be incorrect when observations are spatially dependent. Consequently, in this paper we study per capita income inequalities among European Functional Regions and U.S. Metropolitan Statistical Areas through a distribution dynamics approach in which the conditional mean is estimated via a procedure that allows for spatial dependence (Gerolimetto and Magrini, 2009).","PeriodicalId":410291,"journal":{"name":"ERN: Analytical Models (Topic)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Analytical Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1639345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Conditional distributions for the analysis of convergence are usually estimated using a standard kernel smoother but this is known to be biased. Hyndman et al. (1996) thus suggest a conditional density estimator with a mean function specified by a local polynomial smoother, i.e. one with better bias properties. However, even in this case, the estimated conditional mean might be incorrect when observations are spatially dependent. Consequently, in this paper we study per capita income inequalities among European Functional Regions and U.S. Metropolitan Statistical Areas through a distribution dynamics approach in which the conditional mean is estimated via a procedure that allows for spatial dependence (Gerolimetto and Magrini, 2009).
数据空间依赖时的分布动力学收敛分析
收敛性分析的条件分布通常使用标准核平滑来估计,但已知这是有偏差的。Hyndman等人(1996)因此提出了一种条件密度估计器,其平均函数由局部多项式平滑指定,即具有更好的偏差特性。然而,即使在这种情况下,当观测值具有空间依赖性时,估计的条件均值也可能是不正确的。因此,在本文中,我们通过分布动力学方法研究了欧洲功能区和美国大都市统计区的人均收入不平等,其中通过允许空间依赖性的程序估计条件平均值(Gerolimetto和Magrini, 2009)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信