AMF-CSR: Adaptive Multi-Row Folding of CSR for SpMV on GPU

Jianhua Gao, Weixing Ji, Jie Liu, Senhao Shao, Yizhuo Wang, Feng Shi
{"title":"AMF-CSR: Adaptive Multi-Row Folding of CSR for SpMV on GPU","authors":"Jianhua Gao, Weixing Ji, Jie Liu, Senhao Shao, Yizhuo Wang, Feng Shi","doi":"10.1109/ICPADS53394.2021.00058","DOIUrl":null,"url":null,"abstract":"SpMV is a cost-dominant operation used in many iterative methods for solving large-scale sparse linear systems. However, irregular memory access of SpMV to the multiplied vector leads to low data locality and then harms the performance. This paper presents an adaptive multi-row folding of CSR (AMF-CSR) format for SpMV calculation on GPU. This new storage format supports the folding of the variable number of rows in order to achieve better load balancing in computation. AMF-CSR not only increases the density of non-zero elements in a folded row, thereby improving the access locality of the multiplied vector, but also merges an approximately equal number of nonzero elements in a folded row, hence achieving load balancing. The performance evaluation using 28 sparse matrices shows that the proposed SpMV algorithm based on AMF-CSR achieves the highest speedup of 4.11x and 3.62x on GTX 1080 Ti and Tesla V100 respectively against a fixed multi-row folding-based SpMV algorithm. Evaluation results using 450 regular sparse matrices and 450 irregular sparse matrices also show that AMF-CSR is superior to other SpMV implementations.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SpMV is a cost-dominant operation used in many iterative methods for solving large-scale sparse linear systems. However, irregular memory access of SpMV to the multiplied vector leads to low data locality and then harms the performance. This paper presents an adaptive multi-row folding of CSR (AMF-CSR) format for SpMV calculation on GPU. This new storage format supports the folding of the variable number of rows in order to achieve better load balancing in computation. AMF-CSR not only increases the density of non-zero elements in a folded row, thereby improving the access locality of the multiplied vector, but also merges an approximately equal number of nonzero elements in a folded row, hence achieving load balancing. The performance evaluation using 28 sparse matrices shows that the proposed SpMV algorithm based on AMF-CSR achieves the highest speedup of 4.11x and 3.62x on GTX 1080 Ti and Tesla V100 respectively against a fixed multi-row folding-based SpMV algorithm. Evaluation results using 450 regular sparse matrices and 450 irregular sparse matrices also show that AMF-CSR is superior to other SpMV implementations.
AMF-CSR:基于GPU的SpMV自适应多行折叠CSR
SpMV是一种成本优势运算,用于求解大规模稀疏线性系统的迭代方法中。然而,SpMV对乘向量的不规则内存访问导致数据局部性低,从而影响了性能。提出了一种适用于GPU上SpMV计算的自适应CSR多行折叠(AMF-CSR)格式。这种新的存储格式支持可变行数的折叠,以便在计算中实现更好的负载平衡。AMF-CSR不仅增加了折叠行中非零元素的密度,从而提高了相乘向量的访问局部性,而且在折叠行中合并了近似相等数量的非零元素,从而实现了负载均衡。基于28个稀疏矩阵的性能评价表明,与基于固定多行折叠的SpMV算法相比,基于AMF-CSR的SpMV算法在GTX 1080 Ti和Tesla V100上分别实现了4.11x和3.62x的最高加速。使用450个正则稀疏矩阵和450个不规则稀疏矩阵的评价结果也表明AMF-CSR优于其他SpMV实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信