Survey of geometric and statistical unmixing algorithms for hyperspectral images

M. Parente, A. Plaza
{"title":"Survey of geometric and statistical unmixing algorithms for hyperspectral images","authors":"M. Parente, A. Plaza","doi":"10.1109/WHISPERS.2010.5594929","DOIUrl":null,"url":null,"abstract":"Spectral mixture analysis (also called spectral unmixing) has been an alluring exploitation goal since the earliest days of imaging spectroscopy. No matter the spatial resolution, the spectral signatures collected in natural environments are invariably a mixture of the signatures of the various materials found within the spatial extent of the ground instantaneous field view of the imaging instrument. In this paper, we give a comprehensive enumeration of the unmixing methods used in practice, because of their implementation in widely used software packages, and those published in the literature. We have structured the review according to the basic computational approach followed by the algorithms, with particular attention to those based on the computational geometry formulation, and statistical approaches with a probabilistic foundation. The quantitative assessment of some available techniques in both categories provides an opportunity to review recent advances and to anticipate future developments.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

Spectral mixture analysis (also called spectral unmixing) has been an alluring exploitation goal since the earliest days of imaging spectroscopy. No matter the spatial resolution, the spectral signatures collected in natural environments are invariably a mixture of the signatures of the various materials found within the spatial extent of the ground instantaneous field view of the imaging instrument. In this paper, we give a comprehensive enumeration of the unmixing methods used in practice, because of their implementation in widely used software packages, and those published in the literature. We have structured the review according to the basic computational approach followed by the algorithms, with particular attention to those based on the computational geometry formulation, and statistical approaches with a probabilistic foundation. The quantitative assessment of some available techniques in both categories provides an opportunity to review recent advances and to anticipate future developments.
高光谱图像的几何和统计解混算法综述
光谱混合分析(也称为光谱分解)自成像光谱学的早期发展以来一直是一个诱人的开发目标。无论空间分辨率如何,在自然环境中收集的光谱特征总是在成像仪的地面瞬时视场的空间范围内发现的各种材料的特征的混合。在本文中,我们给出了在实践中使用的分解方法的综合列举,因为它们在广泛使用的软件包中实现,以及在文献中发表的方法。我们根据基本的计算方法和算法来组织审查,特别注意那些基于计算几何公式的方法,以及基于概率基础的统计方法。对这两类中某些现有技术的定量评价提供了一个审查最近进展和预测未来发展的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信