Surrogate ML/AI Model Benchmarking for FAIR Principles' Conformance

P. Luszczek, Cade Brown
{"title":"Surrogate ML/AI Model Benchmarking for FAIR Principles' Conformance","authors":"P. Luszczek, Cade Brown","doi":"10.1109/HPEC55821.2022.9926401","DOIUrl":null,"url":null,"abstract":"We present benchmarking platform for surrogate ML/AI models that enables the essential properties for open science and allow them to be findable, accessible, interoperable, and reusable. We also present a use case of cloud cover modeling, analysis, and experimental testing based on a large dataset of multi-spectral satellite sensor data. We use this particular evaluation to highlight the plethora of choices that need resolution for the life cycle of supporting the scientific workflows with data-driven models that need to be first trained to satisfactory accuracy and later monitored during field usage for proper feedback into both computational results and future data model improvements. Unlike traditional testing, performance, or analysis efforts, we focus exclusively on science-oriented metrics as the relevant figures of merit.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present benchmarking platform for surrogate ML/AI models that enables the essential properties for open science and allow them to be findable, accessible, interoperable, and reusable. We also present a use case of cloud cover modeling, analysis, and experimental testing based on a large dataset of multi-spectral satellite sensor data. We use this particular evaluation to highlight the plethora of choices that need resolution for the life cycle of supporting the scientific workflows with data-driven models that need to be first trained to satisfactory accuracy and later monitored during field usage for proper feedback into both computational results and future data model improvements. Unlike traditional testing, performance, or analysis efforts, we focus exclusively on science-oriented metrics as the relevant figures of merit.
公平原则一致性的代理ML/AI模型基准测试
我们提出了代理ML/AI模型的基准测试平台,该平台支持开放科学的基本属性,并允许它们被发现、访问、互操作和可重用。我们还提出了一个基于多光谱卫星传感器数据大数据集的云覆盖建模、分析和实验测试用例。我们使用这种特殊的评估来强调需要解决的选择过多,这些选择需要通过数据驱动模型来支持科学工作流的生命周期,这些模型需要首先训练到令人满意的准确性,然后在现场使用期间进行监控,以便对计算结果和未来的数据模型改进进行适当的反馈。与传统的测试、性能或分析工作不同,我们专注于科学导向的指标,将其作为价值的相关数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信