A Medical Domain Visual Question Generation Model via Large Language Model

He Zhu, Ren Togo, Takahiro Ogawa, M. Haseyama
{"title":"A Medical Domain Visual Question Generation Model via Large Language Model","authors":"He Zhu, Ren Togo, Takahiro Ogawa, M. Haseyama","doi":"10.1109/ICCE-Taiwan58799.2023.10227045","DOIUrl":null,"url":null,"abstract":"This paper proposes a medical visual question generation model for generating higher-quality questions from medical images. The visual question generation model can guide the diagnostic process and improve the utilization of medical resources by reducing the dependence on physician involvement. Our model uses cross-attention and the large language model to preserve inherent information and addresses the issue of inferior generation performance in the medical domain due to a lack of data. We also control the category of generated questions by setting guidance sentences that include interrogative words. The experimental results demonstrate that our method generates higher-quality questions than previous approaches.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10227045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a medical visual question generation model for generating higher-quality questions from medical images. The visual question generation model can guide the diagnostic process and improve the utilization of medical resources by reducing the dependence on physician involvement. Our model uses cross-attention and the large language model to preserve inherent information and addresses the issue of inferior generation performance in the medical domain due to a lack of data. We also control the category of generated questions by setting guidance sentences that include interrogative words. The experimental results demonstrate that our method generates higher-quality questions than previous approaches.
基于大语言模型的医学领域可视化问题生成模型
为了从医学图像中生成高质量的问题,提出了一种医学视觉问题生成模型。可视化问题生成模型可以通过减少对医生参与的依赖来指导诊断过程,提高医疗资源的利用率。我们的模型使用交叉注意和大语言模型来保留固有信息,并解决了由于缺乏数据而导致医学领域生成性能较差的问题。我们还通过设置包含疑问词的引导句来控制生成问题的类别。实验结果表明,我们的方法比以前的方法产生更高质量的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信