A Frequent Item Graph Approach for Discovering Frequent Itemsets

A.Vishnu Kumar, R. Wahidabanu
{"title":"A Frequent Item Graph Approach for Discovering Frequent Itemsets","authors":"A.Vishnu Kumar, R. Wahidabanu","doi":"10.1109/ICACTE.2008.129","DOIUrl":null,"url":null,"abstract":"Efficient algorithms to discover frequent patterns are crucial in data mining research. Finding frequent item sets is computationally the most expensive step in association rule discovery and therefore it has attracted significant research attention. In this paper, we present a more efficient approach for mining complete sets of frequent item sets. It is a modification of FP-tree. The contribution of this approach is to count the frequent 2-item sets and to form a graphical structure which extracts all possible frequent item sets in the database. We present performance comparisons for our algorithm against FP-growth algorithm.","PeriodicalId":364568,"journal":{"name":"2008 International Conference on Advanced Computer Theory and Engineering","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advanced Computer Theory and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2008.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Efficient algorithms to discover frequent patterns are crucial in data mining research. Finding frequent item sets is computationally the most expensive step in association rule discovery and therefore it has attracted significant research attention. In this paper, we present a more efficient approach for mining complete sets of frequent item sets. It is a modification of FP-tree. The contribution of this approach is to count the frequent 2-item sets and to form a graphical structure which extracts all possible frequent item sets in the database. We present performance comparisons for our algorithm against FP-growth algorithm.
一种发现频繁项集的频繁项图方法
发现频繁模式的有效算法是数据挖掘研究的关键。查找频繁项集是关联规则发现中计算开销最大的步骤,因此引起了广泛的研究关注。本文提出了一种更有效的挖掘频繁项集完备集的方法。它是对FP-tree的一种修正。该方法的贡献在于统计频繁的2项集,并形成一个图形结构,提取数据库中所有可能的频繁项集。我们将我们的算法与FP-growth算法进行性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信