Multi-Channel Convolutional Neural Network for Targeted Sentiment Classification

Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu
{"title":"Multi-Channel Convolutional Neural Network for Targeted Sentiment Classification","authors":"Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu","doi":"10.1109/ICMLC48188.2019.8949286","DOIUrl":null,"url":null,"abstract":"In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.
面向目标情感分类的多通道卷积神经网络
定向情感分析作为一种细粒度的情感分析方法,近年来受到了广泛的关注。确定句子中特定目标的情感极性是主要任务。本文提出了一种多通道卷积神经网络(MCL-CNN)用于目标情感分类。我们的方法不仅可以对句子的单词进行并行化,而且可以有效地提取局部特征。通过使用词性信息、语义信息和交互信息,可以更全面地利用语境和目标,从而获得多样化的特征。最后,在SemEval 2014数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信