Automatic feature extraction and selection for condition monitoring and related datasets

T. Schneider, N. Helwig, A. Schütze
{"title":"Automatic feature extraction and selection for condition monitoring and related datasets","authors":"T. Schneider, N. Helwig, A. Schütze","doi":"10.1109/I2MTC.2018.8409763","DOIUrl":null,"url":null,"abstract":"In this paper a combination of methods for feature extraction and selection is proposed suitable for extracting highly relevant features for machine condition monitoring and related applications from time domain, frequency domain, time-frequency domain and the statistical distribution of the measurement values. The approach is fully automated and suitable for multiple condition monitoring tasks such as vibration and process sensor based analysis. This versatility is demonstrated by evaluating two condition monitoring datasets from our own experiments plus multiple freely available time series classification tasks and comparing the achieved results with the results of algorithms previously suggested or even specifically designed for these datasets.","PeriodicalId":393766,"journal":{"name":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2018.8409763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper a combination of methods for feature extraction and selection is proposed suitable for extracting highly relevant features for machine condition monitoring and related applications from time domain, frequency domain, time-frequency domain and the statistical distribution of the measurement values. The approach is fully automated and suitable for multiple condition monitoring tasks such as vibration and process sensor based analysis. This versatility is demonstrated by evaluating two condition monitoring datasets from our own experiments plus multiple freely available time series classification tasks and comparing the achieved results with the results of algorithms previously suggested or even specifically designed for these datasets.
自动特征提取和选择状态监测和相关数据集
本文提出了一种特征提取与选择相结合的方法,适用于从时域、频域、时频域以及测量值的统计分布中提取与机器状态监测及相关应用高度相关的特征。该方法是全自动的,适用于多种状态监测任务,如基于振动和过程传感器的分析。通过评估来自我们自己的实验的两个状态监测数据集以及多个免费可用的时间序列分类任务,并将所获得的结果与先前建议的甚至专门为这些数据集设计的算法的结果进行比较,可以证明这种多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信