Research on the improved apple classification method of AlexNet

Huifang Yang, Weihua Wang, Zhicheng Mao
{"title":"Research on the improved apple classification method of AlexNet","authors":"Huifang Yang, Weihua Wang, Zhicheng Mao","doi":"10.1117/12.3000778","DOIUrl":null,"url":null,"abstract":"To address the issue of high cost and low efficiency in the manual sorting of apples, we proposed an improved apple classification method based on the AlexNet architecture. The algorithm added a batch normalization layer after each convolutional layer in the network structure to speed up the model's training process. Furthermore, we replaced the fully connected layer with a global average pooling layer to reduce the number of training parameters and save model training time. To improve the algorithm's robustness, we also performed data augmentation on the training samples before validating the algorithm to obtain an expanded dataset. Experimental results showed that the improved AlexNet network shortened the training time by 0.54%, increased the testing speed by 2.5%, and improved the accuracy by 1.12% compared to the original AlexNet network. Moreover, the training time of the improved AlexNet network was lower than that of other networks (AlexNet, ResNet50, Vgg16). The improved AlexNet network can efficiently and quickly classify apples and promote the automation of apple classification.","PeriodicalId":210802,"journal":{"name":"International Conference on Image Processing and Intelligent Control","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3000778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issue of high cost and low efficiency in the manual sorting of apples, we proposed an improved apple classification method based on the AlexNet architecture. The algorithm added a batch normalization layer after each convolutional layer in the network structure to speed up the model's training process. Furthermore, we replaced the fully connected layer with a global average pooling layer to reduce the number of training parameters and save model training time. To improve the algorithm's robustness, we also performed data augmentation on the training samples before validating the algorithm to obtain an expanded dataset. Experimental results showed that the improved AlexNet network shortened the training time by 0.54%, increased the testing speed by 2.5%, and improved the accuracy by 1.12% compared to the original AlexNet network. Moreover, the training time of the improved AlexNet network was lower than that of other networks (AlexNet, ResNet50, Vgg16). The improved AlexNet network can efficiently and quickly classify apples and promote the automation of apple classification.
改进的AlexNet苹果分类方法研究
针对人工分类苹果成本高、效率低的问题,提出了一种改进的基于AlexNet架构的苹果分类方法。该算法在网络结构的每个卷积层之后增加了批处理归一化层,加快了模型的训练过程。此外,我们用全局平均池化层代替了全连接层,减少了训练参数的数量,节省了模型的训练时间。为了提高算法的鲁棒性,在验证算法之前,我们还对训练样本进行了数据扩充,以获得扩展的数据集。实验结果表明,改进后的AlexNet网络与原AlexNet网络相比,训练时间缩短了0.54%,测试速度提高了2.5%,准确率提高了1.12%。而且,改进后的AlexNet网络的训练时间比其他网络(AlexNet、ResNet50、Vgg16)要短。改进后的AlexNet网络可以高效、快速地对苹果进行分类,促进苹果分类的自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信