Estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling

M. V. Markova, D. O. Shestopalov, A. Nikolaev
{"title":"Estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling","authors":"M. V. Markova, D. O. Shestopalov, A. Nikolaev","doi":"10.1109/USBEREIT.2018.8384548","DOIUrl":null,"url":null,"abstract":"In this study estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling is considered. Logistic regression is used to classify six hand movements: grasping, opening, flexion, pronation and supination using fourteen time domain features. To evaluate the importance of features linear regression coefficients are used. Most informative features are shown.","PeriodicalId":176222,"journal":{"name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USBEREIT.2018.8384548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this study estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling is considered. Logistic regression is used to classify six hand movements: grasping, opening, flexion, pronation and supination using fourteen time domain features. To evaluate the importance of features linear regression coefficients are used. Most informative features are shown.
前臂假体控制问题中肌电信号特征信息量的估计
研究了前臂假体控制问题中肌电信号特征信息量的估计问题。利用14个时域特征,采用Logistic回归对抓握、张开、屈曲、旋前和旋后六种手部动作进行分类。为了评估特征的重要性,使用线性回归系数。显示了大多数信息丰富的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信