{"title":"High-efficiency and ultrapure-green light emitting diodes using colloidal 2D perovskites (Conference Presentation)","authors":"Sudhir Kumar, J. Jagielski, C. Shih","doi":"10.1117/12.2319160","DOIUrl":null,"url":null,"abstract":"Color-pure green emission is essential to realize next-generation vivid displays. Recently, solution-processed OIHPs are attracting increasing attention because of their narrow emission, and potential to be fabricated energy-efficient and low-cost in lighting and display applications. However, the perovskite light emitting diodes (LEDs) that approach Rec. 2020 standard green emission with a maximum current efficiency ≥15 cd/A have not been achieved by far. Here, we present ultrapure green LEDs based on quantum confined colloidal perovskite emitters. A spin-coated thin film of two dimensional (2D) perovskites demonstrates a high absolute photoluminescence quantum efficiency (PLQE ~ 94%). The resultant perovskite LEDs show a maximum current efficiency >20 cd/A by using a composite emission layer of colloidal 2D perovskites and poly(methyl methacrylate). As compared to Rec. 2020 standard color gamut, the green emission shows >97% color saturation in the 1931 CIE color space. We present ultra-flexible perovskite LEDs with a bending curvature radius of 2 mm by using a 50 μm thin polyimide substrate. We further demonstrate a high-efficiency large-area (30 mm2) device without compromising in the device performance. These devices show ultimate potential to realize low-cost, large-scale fabrication of the ultra-pure green LEDs for the next-generation of displays.","PeriodicalId":158502,"journal":{"name":"Organic Light Emitting Materials and Devices XXII","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Light Emitting Materials and Devices XXII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2319160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Color-pure green emission is essential to realize next-generation vivid displays. Recently, solution-processed OIHPs are attracting increasing attention because of their narrow emission, and potential to be fabricated energy-efficient and low-cost in lighting and display applications. However, the perovskite light emitting diodes (LEDs) that approach Rec. 2020 standard green emission with a maximum current efficiency ≥15 cd/A have not been achieved by far. Here, we present ultrapure green LEDs based on quantum confined colloidal perovskite emitters. A spin-coated thin film of two dimensional (2D) perovskites demonstrates a high absolute photoluminescence quantum efficiency (PLQE ~ 94%). The resultant perovskite LEDs show a maximum current efficiency >20 cd/A by using a composite emission layer of colloidal 2D perovskites and poly(methyl methacrylate). As compared to Rec. 2020 standard color gamut, the green emission shows >97% color saturation in the 1931 CIE color space. We present ultra-flexible perovskite LEDs with a bending curvature radius of 2 mm by using a 50 μm thin polyimide substrate. We further demonstrate a high-efficiency large-area (30 mm2) device without compromising in the device performance. These devices show ultimate potential to realize low-cost, large-scale fabrication of the ultra-pure green LEDs for the next-generation of displays.