Efficient Management of Semi-Persistent Data for the Evolving Web

K. Cheng, X. You, Yanchun Zhang
{"title":"Efficient Management of Semi-Persistent Data for the Evolving Web","authors":"K. Cheng, X. You, Yanchun Zhang","doi":"10.1109/WAINA.2008.192","DOIUrl":null,"url":null,"abstract":"The Web is an information repository that grows and evolves fast. Traditional data management systems are based on a persistence model that are not suited for management of Web data. In this paper, we propose a semi-persistence model to capture the evolving nature of the Web. By semi-persistence, we mean data with relaxed persistence requirement where obsolete data may be moved to somewhere or removed implicitly and autonomously. In a semi-persistent data management system, data and the associated statistics have to be maintained efficiently to support trend-report queries and age estimation. We propose a space-efficient data structure, called moving bloom filters (MBF) to maintain time-sensitive statistics of underlying data. The preliminary experiments show that the optimized MBF achieves considerable improvement on space usage while maintaining the same precise estimation of frequency statistics.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Web is an information repository that grows and evolves fast. Traditional data management systems are based on a persistence model that are not suited for management of Web data. In this paper, we propose a semi-persistence model to capture the evolving nature of the Web. By semi-persistence, we mean data with relaxed persistence requirement where obsolete data may be moved to somewhere or removed implicitly and autonomously. In a semi-persistent data management system, data and the associated statistics have to be maintained efficiently to support trend-report queries and age estimation. We propose a space-efficient data structure, called moving bloom filters (MBF) to maintain time-sensitive statistics of underlying data. The preliminary experiments show that the optimized MBF achieves considerable improvement on space usage while maintaining the same precise estimation of frequency statistics.
不断发展的Web中半持久数据的有效管理
Web是一个快速增长和发展的信息存储库。传统的数据管理系统基于持久性模型,不适合管理Web数据。在本文中,我们提出了一个半持久化模型来捕捉Web不断发展的本质。通过半持久性,我们指的是具有宽松持久性要求的数据,其中过时的数据可以隐式和自主地移动到某个地方或删除。在半持久性数据管理系统中,必须有效地维护数据和相关统计信息,以支持趋势报告查询和年龄估计。我们提出了一种空间高效的数据结构,称为移动布隆过滤器(MBF),以维护底层数据的时间敏感统计。初步实验表明,优化后的MBF在保持频率统计估计精度不变的情况下,在空间利用率上有了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信