Stochasticity of probabilistic systems: analysis methodologies case-study

Anwitaman Datta, M. Hasler, K. Aberer
{"title":"Stochasticity of probabilistic systems: analysis methodologies case-study","authors":"Anwitaman Datta, M. Hasler, K. Aberer","doi":"10.1109/COLCOM.2005.1651267","DOIUrl":null,"url":null,"abstract":"We do a case study of two different analysis techniques for studying the stochastic behavior of a randomized system/algorithms: (i) The first approach can be broadly termed as a mean value analysis (MVA), where the evolution of the mean state is studied assuming that the system always actually resides in the mean state; (ii) The second approach looks at the probability distribution function of the system states at any time instance, thus studying the evolution of the (probability mass) distribution function (EoDF)","PeriodicalId":365186,"journal":{"name":"2005 International Conference on Collaborative Computing: Networking, Applications and Worksharing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Collaborative Computing: Networking, Applications and Worksharing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLCOM.2005.1651267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We do a case study of two different analysis techniques for studying the stochastic behavior of a randomized system/algorithms: (i) The first approach can be broadly termed as a mean value analysis (MVA), where the evolution of the mean state is studied assuming that the system always actually resides in the mean state; (ii) The second approach looks at the probability distribution function of the system states at any time instance, thus studying the evolution of the (probability mass) distribution function (EoDF)
概率系统的随机性:分析方法-个案研究
我们对研究随机系统/算法的随机行为的两种不同分析技术进行了案例研究:(i)第一种方法可以被广泛地称为均值分析(MVA),其中研究平均状态的演变假设系统实际上总是处于平均状态;(ii)第二种方法观察系统状态在任意时刻的概率分布函数,从而研究(概率质量)分布函数(EoDF)的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信