Tatsuhiro Sakai, Keiichi Tamura, Shota Kotozaki, Tsubasa Hayashida, H. Kitakami
{"title":"Real-time local topic extraction using density-based adaptive spatiotemporal clustering for enhancing local situation awareness","authors":"Tatsuhiro Sakai, Keiichi Tamura, Shota Kotozaki, Tsubasa Hayashida, H. Kitakami","doi":"10.5220/0005593302030210","DOIUrl":null,"url":null,"abstract":"In the era of big data, we are witnessing the rapid growth of a new type of information source. In particular, tweets are one of the most widely used microblogging services for situation awareness during emergencies. In our previous work, we focused on geotagged tweets posted on Twitter that included location information as well as a time and text message. We previously developed a real-time analysis system using the (ε,τ)-density-based adaptive spatiotemporal clustering algorithm to analyze local topics and events. The proposed spatiotemporal analysis system successfully detects emerging bursty areas in which geotagged tweets related to observed topics are posted actively; however the system is tailor-made and specialized for a particular observed topic, therefore, it cannot identify other topics. To address this issue, we propose a new real-time spatiotemporal analysis system for enhancing local situation awareness using a density-based adaptive spatiotemporal clustering algorithm. In the proposed system, local bursty keywords are extracted and their bursty areas are identified. We evaluated the proposed system using actual real world topics related to weather in Japan. Experimental results show that the proposed system can extract local topics and events.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005593302030210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the era of big data, we are witnessing the rapid growth of a new type of information source. In particular, tweets are one of the most widely used microblogging services for situation awareness during emergencies. In our previous work, we focused on geotagged tweets posted on Twitter that included location information as well as a time and text message. We previously developed a real-time analysis system using the (ε,τ)-density-based adaptive spatiotemporal clustering algorithm to analyze local topics and events. The proposed spatiotemporal analysis system successfully detects emerging bursty areas in which geotagged tweets related to observed topics are posted actively; however the system is tailor-made and specialized for a particular observed topic, therefore, it cannot identify other topics. To address this issue, we propose a new real-time spatiotemporal analysis system for enhancing local situation awareness using a density-based adaptive spatiotemporal clustering algorithm. In the proposed system, local bursty keywords are extracted and their bursty areas are identified. We evaluated the proposed system using actual real world topics related to weather in Japan. Experimental results show that the proposed system can extract local topics and events.