Finding near optimal separators in planar graphs

Satish Rao
{"title":"Finding near optimal separators in planar graphs","authors":"Satish Rao","doi":"10.1109/SFCS.1987.26","DOIUrl":null,"url":null,"abstract":"A k-ratio edge separator is a set of edges which separates a weighted graph into two disconnected sets of components neither of which contains more than k-1/k of the original graph's weight. An optimal quotient separator is an edge separator where the size of the separator (i.e., the number of edges) divided by the weight of the smaller set of components is minimized. An optimal quotient k-ratio separator is an edge separator where the size of the separator (i.e., the number of edges) divided by the smaller of either 1/k of the total weight or the weight of the smaller set of components is minimized. In this paper we present an algorithm that finds the optimal quotient k-ratio separator for any k ≥ 3. We use the optimal quotient algorithm to obtain approximation algorithms for finding optimal k-ratio edge separators for any k ≥ 3. Given a planar graph with a size OPT k-ratio separator, we describe an algorithm which a finds k-ratio separator which costs less than O(OPT log n). More importantly the algorithm finds ck-ratio separators (for any c ≫ 1) which cost less than C(c)OPT, where C(c) depends only on c.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

A k-ratio edge separator is a set of edges which separates a weighted graph into two disconnected sets of components neither of which contains more than k-1/k of the original graph's weight. An optimal quotient separator is an edge separator where the size of the separator (i.e., the number of edges) divided by the weight of the smaller set of components is minimized. An optimal quotient k-ratio separator is an edge separator where the size of the separator (i.e., the number of edges) divided by the smaller of either 1/k of the total weight or the weight of the smaller set of components is minimized. In this paper we present an algorithm that finds the optimal quotient k-ratio separator for any k ≥ 3. We use the optimal quotient algorithm to obtain approximation algorithms for finding optimal k-ratio edge separators for any k ≥ 3. Given a planar graph with a size OPT k-ratio separator, we describe an algorithm which a finds k-ratio separator which costs less than O(OPT log n). More importantly the algorithm finds ck-ratio separators (for any c ≫ 1) which cost less than C(c)OPT, where C(c) depends only on c.
在平面图中寻找接近最优的分隔符
k-ratio边分隔符是一组边,它将一个加权图分成两个不相连的分量集,这两个分量集的权重都不超过原图的k-1/k。最优商分隔符是一个边分隔符,其中分隔符的大小(即边的数量)除以较小的组件集的权重是最小的。最优商k比分隔符是一种边缘分隔符,其中分隔符的大小(即边的数量)除以总权重的1/k或较小的组件集的权重中的较小者是最小的。本文给出了一种求任意k≥3的最优商k比分隔符的算法。我们使用最优商算法来获得对于任意k≥3的最优k-ratio边缘分离器的近似算法。给定一个大小为OPT的k-ratio分隔符的平面图,我们描述了一种算法,该算法找到了代价小于O(OPT log n)的k-ratio分隔符。更重要的是,该算法找到了代价小于c (c)OPT的k-ratio分隔符(对于任何c > 1),其中c (c)仅依赖于c。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信