Measurement and analysis of power conversion efficiency in thin-film and segmented thermoelectric devices

A. Reddy, E. Siivola, P. Thomas, G. Krueger, R. Venkatasubramanian
{"title":"Measurement and analysis of power conversion efficiency in thin-film and segmented thermoelectric devices","authors":"A. Reddy, E. Siivola, P. Thomas, G. Krueger, R. Venkatasubramanian","doi":"10.1109/ICT.2005.1519890","DOIUrl":null,"url":null,"abstract":"A method for evaluating the power conversion efficiency, and hence ZT/sub M/, of thin-film superlattice, bulk single-stage, and segmented-bulk thermoelectric devices is discussed. The challenge in measuring performance of small-scale devices is the difficulty of explicitly measuring temperatures at TE material junctions. An indirect method, using limited thermocouple measurements and electrical voltage/current measurements, will be detailed in this presentation. A temperature gradient is established across the device, and the resulting open-circuit voltage produced is recorded. In the case of a segmented device, a system of equations and unknowns is formulated and solved numerically, taking into account the variation of bulk material properties with temperature. The results are the temperature gradients across each material leg, allowing for computation of the heat transferred, and thus conversion efficiency. A summary of exceptional results are outlined for a single stage thin-film device and a three-stage cascaded device.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A method for evaluating the power conversion efficiency, and hence ZT/sub M/, of thin-film superlattice, bulk single-stage, and segmented-bulk thermoelectric devices is discussed. The challenge in measuring performance of small-scale devices is the difficulty of explicitly measuring temperatures at TE material junctions. An indirect method, using limited thermocouple measurements and electrical voltage/current measurements, will be detailed in this presentation. A temperature gradient is established across the device, and the resulting open-circuit voltage produced is recorded. In the case of a segmented device, a system of equations and unknowns is formulated and solved numerically, taking into account the variation of bulk material properties with temperature. The results are the temperature gradients across each material leg, allowing for computation of the heat transferred, and thus conversion efficiency. A summary of exceptional results are outlined for a single stage thin-film device and a three-stage cascaded device.
薄膜和分段热电器件功率转换效率的测量与分析
本文讨论了薄膜超晶格热电器件、块体单级热电器件和分段热电器件的功率转换效率及ZT/sub - M/的计算方法。测量小型器件性能的挑战是难以明确测量TE材料结的温度。本文将详细介绍使用有限热电偶测量和电压/电流测量的间接方法。在整个器件上建立温度梯度,并记录所产生的开路电压。在分段装置的情况下,考虑到大块材料性质随温度的变化,建立了一个方程和未知数系统并进行了数值求解。结果是每个材料腿的温度梯度,允许计算传热,从而转换效率。总结了单级薄膜器件和三级级联器件的特殊结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信