Selective detection with adaptive channel estimation for MIMO OFDM

Mohammed Kashoob, Y. Zakharov
{"title":"Selective detection with adaptive channel estimation for MIMO OFDM","authors":"Mohammed Kashoob, Y. Zakharov","doi":"10.1109/SAM.2016.7569679","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of a new selective detection algorithm that is a modification of that proposed in [1]. The channel estimation used is based on adaptive model-based regularization in Multi Input Multi Output (MIMO) OFDM systems. The Basis Expansion Model (BEM) approach is employed for channel estimation. For the adaptive regularization, regularization matrices are computed for a set of uniform power delay profiles. The generalized cross-validation method is then used to select a best matrix from the precomputed set. We compare the performance of the detector implementing the channel estimation with adaptive regularization with the performance of the detector using the Linear Minimum Mean Square Error (LMMSE) channel estimation.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we investigate the performance of a new selective detection algorithm that is a modification of that proposed in [1]. The channel estimation used is based on adaptive model-based regularization in Multi Input Multi Output (MIMO) OFDM systems. The Basis Expansion Model (BEM) approach is employed for channel estimation. For the adaptive regularization, regularization matrices are computed for a set of uniform power delay profiles. The generalized cross-validation method is then used to select a best matrix from the precomputed set. We compare the performance of the detector implementing the channel estimation with adaptive regularization with the performance of the detector using the Linear Minimum Mean Square Error (LMMSE) channel estimation.
基于自适应信道估计的MIMO OFDM选择性检测
在本文中,我们研究了一种新的选择性检测算法的性能,该算法是对[1]中提出的算法的修改。在多输入多输出(MIMO) OFDM系统中,信道估计采用基于自适应模型的正则化方法。采用基扩展模型(BEM)方法进行信道估计。对于自适应正则化,计算了一组均匀功率延迟曲线的正则化矩阵。然后使用广义交叉验证方法从预先计算的集合中选择最佳矩阵。我们比较了采用自适应正则化信道估计的检测器与采用线性最小均方误差信道估计的检测器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信