{"title":"PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation","authors":"Dandan Lin, Shijie Sun, Jingtao Ding, Xu Ke, Hao Gu, Xing Huang, Chonggang Song, Xuri Zhang, Lingling Yi, Jie Wen, Chuan Chen","doi":"10.1145/3511808.3557084","DOIUrl":null,"url":null,"abstract":"Recently, graph neural network (GNN) approaches have received huge interests in recommendation tasks due to their ability of learning more effective user and item representations. However, existing GNN-based recommendation models cannot support real-time recommendation where the model keeps its freshness by continuously training the streaming data that users produced, leading to negative impact on recommendation performance. To fully support graph-enhanced large-scale recommendation in real-time scenarios, a deep graph learning system is required to dynamically store the streaming data as a graph structure and enable the development of any GNN model incorporated with the capabilities of real-time training and online inference. However, such requirements rule out existing deep graph learning solutions. In this paper, we propose a new deep graph learning system called PlatoGL, where (1) an effective block-based graph storage is designed with non-trivial insertion/deletion mechanism for updating the graph topology in-milliseconds, (2) a non-trivial multi-blocks neighbour sampling method is proposed for efficient graph query, and (3) a cache technique is exploited to improve the storage stability. We have deployed PlatoGL in Wechat, and leveraged its capability in various content recommendation scenarios including live-streaming, article and micro-video. Comprehensive experiments on both deployment performance and benchmark performance~(w.r.t. its key features) demonstrate its effectiveness and scalability. One real-time GNN-based model, developed with PlatoGL, now serves the major online traffic in WeChat live-streaming recommendation scenario.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Recently, graph neural network (GNN) approaches have received huge interests in recommendation tasks due to their ability of learning more effective user and item representations. However, existing GNN-based recommendation models cannot support real-time recommendation where the model keeps its freshness by continuously training the streaming data that users produced, leading to negative impact on recommendation performance. To fully support graph-enhanced large-scale recommendation in real-time scenarios, a deep graph learning system is required to dynamically store the streaming data as a graph structure and enable the development of any GNN model incorporated with the capabilities of real-time training and online inference. However, such requirements rule out existing deep graph learning solutions. In this paper, we propose a new deep graph learning system called PlatoGL, where (1) an effective block-based graph storage is designed with non-trivial insertion/deletion mechanism for updating the graph topology in-milliseconds, (2) a non-trivial multi-blocks neighbour sampling method is proposed for efficient graph query, and (3) a cache technique is exploited to improve the storage stability. We have deployed PlatoGL in Wechat, and leveraged its capability in various content recommendation scenarios including live-streaming, article and micro-video. Comprehensive experiments on both deployment performance and benchmark performance~(w.r.t. its key features) demonstrate its effectiveness and scalability. One real-time GNN-based model, developed with PlatoGL, now serves the major online traffic in WeChat live-streaming recommendation scenario.