Fractal-based dynamic response of a pair of spur gears considering microscopic surface morphology

IF 3.4 Q1 ENGINEERING, MECHANICAL
Xin Yu, Yunyun Sun, Sheng Liu, Shijing Wu
{"title":"Fractal-based dynamic response of a pair of spur gears considering microscopic surface morphology","authors":"Xin Yu,&nbsp;Yunyun Sun,&nbsp;Sheng Liu,&nbsp;Shijing Wu","doi":"10.1002/msd2.12004","DOIUrl":null,"url":null,"abstract":"<p>The meshing surfaces of a gear pair are rough from a microscopic perspective and the surface topography will affect the dynamic response. To study the influence of real surface topography on the gear system dynamic performance, this paper establishes a 3-degree of freedom transverse-torsional dynamic model with regard to the morphology of the interface. By fractal theory, the expression of backlash between gears is modified based on the height of asperities. The time-varying stiffness is calculated according to the fractal method rather than assuming a constant, which is more realistic. The dimensionless dynamic differential equations are established and solved with surface topography affected backlash function and time-varying stiffness. The dynamic response of the gear system with respect to fractal dimension and fractal roughness is analyzed.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"1 2","pages":"194-206"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12004","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 6

Abstract

The meshing surfaces of a gear pair are rough from a microscopic perspective and the surface topography will affect the dynamic response. To study the influence of real surface topography on the gear system dynamic performance, this paper establishes a 3-degree of freedom transverse-torsional dynamic model with regard to the morphology of the interface. By fractal theory, the expression of backlash between gears is modified based on the height of asperities. The time-varying stiffness is calculated according to the fractal method rather than assuming a constant, which is more realistic. The dimensionless dynamic differential equations are established and solved with surface topography affected backlash function and time-varying stiffness. The dynamic response of the gear system with respect to fractal dimension and fractal roughness is analyzed.

Abstract Image

考虑微观表面形貌的直齿齿轮分形动态响应
齿轮副的啮合表面从微观上看是粗糙的,其表面形貌会影响齿轮副的动态响应。为了研究实际表面形貌对齿轮系统动力学性能的影响,建立了考虑界面形貌的3自由度横扭动力学模型。利用分形理论,根据齿突高度对齿间间隙的表达式进行了修正。时变刚度的计算采用分形方法,而不是假设一个常数,更符合实际。建立了无量纲动力微分方程,求解了受表面形貌影响的间隙函数和时变刚度。分析了分形维数和分形粗糙度对齿轮系统动态响应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信