On the maximum function in stochastic computing

Florian Neugebauer, I. Polian, J. Hayes
{"title":"On the maximum function in stochastic computing","authors":"Florian Neugebauer, I. Polian, J. Hayes","doi":"10.1145/3310273.3323050","DOIUrl":null,"url":null,"abstract":"Stochastic circuits (SCs) offer significant area, power and energy benefits at the cost of computational inaccuracies. SCs have received particular attention recently in the context of neural networks (NNs). Many NNs use the maximum function, e.g., in the max-pooling layer of convolutional NNs. Currently, approximate workarounds are often employed for this function. We propose NMax, a new SC design for the maximum function that produces an exact result with latency similar to an approximate circuit. Furthermore, unlike most stochastic functions, NMax is correlation insensitive. We also observe that maximum calculations are subject to application-specific bias and analyze this bias.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Stochastic circuits (SCs) offer significant area, power and energy benefits at the cost of computational inaccuracies. SCs have received particular attention recently in the context of neural networks (NNs). Many NNs use the maximum function, e.g., in the max-pooling layer of convolutional NNs. Currently, approximate workarounds are often employed for this function. We propose NMax, a new SC design for the maximum function that produces an exact result with latency similar to an approximate circuit. Furthermore, unlike most stochastic functions, NMax is correlation insensitive. We also observe that maximum calculations are subject to application-specific bias and analyze this bias.
论随机计算中的极大函数
随机电路(SCs)以计算误差为代价,提供了显著的面积、功率和能源效益。最近在神经网络(nn)的背景下,SCs受到了特别的关注。许多神经网络使用最大函数,例如,在卷积神经网络的最大池化层。目前,这个函数通常采用近似的变通方法。我们提出了NMax,这是一种新的SC设计,用于最大函数,可以产生与近似电路相似的延迟的精确结果。此外,与大多数随机函数不同,NMax是不相关的。我们还观察到最大计算受到应用特定偏差的影响,并分析了这种偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信