Philipp Mock, Maike Tibus, A. Ehlis, H. Baayen, Peter Gerjets
{"title":"Predicting ADHD Risk from Touch Interaction Data","authors":"Philipp Mock, Maike Tibus, A. Ehlis, H. Baayen, Peter Gerjets","doi":"10.1145/3242969.3242986","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R² = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3242986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R² = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.