Limits to the fault-tolerance of a feedforward neural network with learning

J. Nijhuis, B. Höfflinger, A. V. Schaik, L. Spaanenburg
{"title":"Limits to the fault-tolerance of a feedforward neural network with learning","authors":"J. Nijhuis, B. Höfflinger, A. V. Schaik, L. Spaanenburg","doi":"10.1109/FTCS.1990.89370","DOIUrl":null,"url":null,"abstract":"Input data and hardware fault tolerance of neural networks are discussed. It is shown that fault-tolerant behavior is not self-evident but must be activated by an appropriate learning scheme. Practical limitations are demonstrated by an example of neural character recognition. The results show that the effects of learning and synapse weight decay on fault tolerance largely influence the practicality of large-scale silicon implementations. It is anticipated that, owing to implementation issues, such as the use of volatile memories, some neural VLSI architectures will not be sufficiently fault tolerant.<<ETX>>","PeriodicalId":174189,"journal":{"name":"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1990.89370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Input data and hardware fault tolerance of neural networks are discussed. It is shown that fault-tolerant behavior is not self-evident but must be activated by an appropriate learning scheme. Practical limitations are demonstrated by an example of neural character recognition. The results show that the effects of learning and synapse weight decay on fault tolerance largely influence the practicality of large-scale silicon implementations. It is anticipated that, owing to implementation issues, such as the use of volatile memories, some neural VLSI architectures will not be sufficiently fault tolerant.<>
具有学习的前馈神经网络容错限制
讨论了神经网络的输入数据和硬件容错问题。结果表明,系统的容错行为不是自明的,必须通过适当的学习方案来激活。通过一个神经字符识别的例子说明了实际的局限性。结果表明,学习和突触权重衰减对容错性的影响很大程度上影响了大规模芯片实现的实用性。预计,由于实现问题,如使用易失性存储器,一些神经VLSI架构将没有足够的容错性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信