{"title":"Modular multilevel converter modulation using fundamental switching selective harmonic elimination method","authors":"Yashwant Sinha, A. Nampally","doi":"10.1109/ICRERA.2016.7884431","DOIUrl":null,"url":null,"abstract":"This paper address the issue of low order harmonics in a modular multilevel converter (MMC). Using fundamental switching selective harmonic elimination (SHE), the control angles are calculated from nonlinear equations by Newton-Raphson method. The selective harmonic elimination equations are solved in such a way that the first switching angle is used to control the magnitude of the fundamental voltage and the remaining angles are used to eliminate the lowest odd, non-triplen harmonics components as they dominate the total harmonic distortion of the converter. The concept is validated using a 9-level detailed model of MMC in PSCAD/EMTDC®. The simulation result shows a good agreement with theoretical analysis and in comparison with conventional sinusoidal pulse width modulation (SPWM), the proposed method, eliminates low order harmonics, leading to a low total harmonic distortion.","PeriodicalId":287863,"journal":{"name":"2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2016.7884431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper address the issue of low order harmonics in a modular multilevel converter (MMC). Using fundamental switching selective harmonic elimination (SHE), the control angles are calculated from nonlinear equations by Newton-Raphson method. The selective harmonic elimination equations are solved in such a way that the first switching angle is used to control the magnitude of the fundamental voltage and the remaining angles are used to eliminate the lowest odd, non-triplen harmonics components as they dominate the total harmonic distortion of the converter. The concept is validated using a 9-level detailed model of MMC in PSCAD/EMTDC®. The simulation result shows a good agreement with theoretical analysis and in comparison with conventional sinusoidal pulse width modulation (SPWM), the proposed method, eliminates low order harmonics, leading to a low total harmonic distortion.