{"title":"DBAR: An efficient routing algorithm to support multiple concurrent applications in networks-on-chip","authors":"Sheng Ma, Natalie D. Enright Jerger, Zhiying Wang","doi":"10.1145/2000064.2000113","DOIUrl":null,"url":null,"abstract":"With the emergence of many-core architectures, it is quite likely that multiple applications will run concurrently on a system. Existing locally and globally adaptive routing algorithms largely overlook issues associated with workload consolidation. The shortsightedness of locally adaptive routing algorithms limits performance due to poor network congestion avoidance. Globally adaptive routing algorithms attack this issue by introducing a congestion propagation network to obtain network status information beyond neighboring nodes. However, they may suffer from intra- and inter-application interference during output port selection for consolidated workloads, coupling the behavior of otherwise independent applications and negatively affecting performance. To address these two issues, we propose Destination-Based Adaptive Routing (DBAR). We design a novel low-cost congestion propagation network that leverages both local and non-local network information for more accurate congestion estimates. Thus, DBAR offers effective adaptivity for congestion beyond neighboring nodes. More importantly, by integrating the destination into the selection function, DBAR mitigates intra- and inter-application interference and offers dynamic isolation among regions. Experimental results show that DBAR can offer better performance than the best baseline algorithm for all measured configurations; it is well suited for workload consolidation. The wiring overhead of DBAR is low and DBAR provides improvement in the energy-delay product for medium and high injection rates.","PeriodicalId":340732,"journal":{"name":"2011 38th Annual International Symposium on Computer Architecture (ISCA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 38th Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2000064.2000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181
Abstract
With the emergence of many-core architectures, it is quite likely that multiple applications will run concurrently on a system. Existing locally and globally adaptive routing algorithms largely overlook issues associated with workload consolidation. The shortsightedness of locally adaptive routing algorithms limits performance due to poor network congestion avoidance. Globally adaptive routing algorithms attack this issue by introducing a congestion propagation network to obtain network status information beyond neighboring nodes. However, they may suffer from intra- and inter-application interference during output port selection for consolidated workloads, coupling the behavior of otherwise independent applications and negatively affecting performance. To address these two issues, we propose Destination-Based Adaptive Routing (DBAR). We design a novel low-cost congestion propagation network that leverages both local and non-local network information for more accurate congestion estimates. Thus, DBAR offers effective adaptivity for congestion beyond neighboring nodes. More importantly, by integrating the destination into the selection function, DBAR mitigates intra- and inter-application interference and offers dynamic isolation among regions. Experimental results show that DBAR can offer better performance than the best baseline algorithm for all measured configurations; it is well suited for workload consolidation. The wiring overhead of DBAR is low and DBAR provides improvement in the energy-delay product for medium and high injection rates.