Lowering Evolved Artificial Neural Network Overfitting through High-Probability Mutation

Croitoru Nicolae-Eugen
{"title":"Lowering Evolved Artificial Neural Network Overfitting through High-Probability Mutation","authors":"Croitoru Nicolae-Eugen","doi":"10.1109/SYNASC.2016.059","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks often suffer from overfitting, both when trained through backpropagation or evolved through a Genetic Algorithm. An attempt at mitigating the overfitting of GA-evolved ANNs is made by using High-Probability Mutation (≈0.95) on binary-encoded ANN weights. The benchmark used is predicting the evolution of an Internet social network using real-world data. A lower bound is put on the overfit, and both prediction error and overfit are further broken down according to ANN hidden-layers size.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Artificial Neural Networks often suffer from overfitting, both when trained through backpropagation or evolved through a Genetic Algorithm. An attempt at mitigating the overfitting of GA-evolved ANNs is made by using High-Probability Mutation (≈0.95) on binary-encoded ANN weights. The benchmark used is predicting the evolution of an Internet social network using real-world data. A lower bound is put on the overfit, and both prediction error and overfit are further broken down according to ANN hidden-layers size.
通过大概率突变降低人工神经网络过拟合
人工神经网络经常遭受过拟合,无论是通过反向传播训练还是通过遗传算法进化。通过对二值编码的神经网络权值进行高概率突变(≈0.95),尝试减轻ga进化的神经网络的过拟合。使用的基准是使用真实世界的数据来预测互联网社交网络的演变。对过拟合设置下界,并根据人工神经网络隐藏层的大小进一步分解预测误差和过拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信